
TRS-eo® MODEL 1/111

SERIES I
EDITOR
ASSEMBLER

~ TRS-BD

CUSTOM MANUFACTURED IN THE USA FOR RADIO SHACK

Catalog
Number

26-2011
26-2013

SOFTWARE

TM

A DIVISION OF TANDY CORP.

TRS-80 Series-I Tape/Disk Editor/Assembler© 1981 Tandy Corpo
ration. All rights reserved.

Derived from origiMl Tape Editor/Assembler© 1978 Micro.wft.
Licensed to Tandy Corporation.

Series I Editor Assembler Manual © /981 Tandy Corporation. All
rights reserved.

Reprochtction or use without express written permission from Tandy
Corporation, of any portion of this manual is prohibited. While rea
sonable efforts have been taken in the preparation of this manual to
assure its accuracy, Tandy Corporation assumes no liability resulting
from any errors or omissions in this manual, or from the use of the
information obtained herein.

Please refer to the Software license on the back of this manual for lim
itations on use and reproduction of this Software pockage.

NOTICE TO MODEL III OWNERS OF THE
SERIES I EDITOR/ASSEMBLER

Catalog Number 26-2011

When operating the Editor/Assembler, you will use the
<SHIFT> key to type certain symbols, such as & , i, $,or*·
Use the LEFT <SHIFT> key only. Do not use the right
<SHIFT> key to type these symbols.

8759128

CONTENTS

Table of Contents

1 . Introduction . 1
What is an Editor/ Assembler? . 1
The Series-I Editor/ Assembler . 1
The Scope and Organization of This Manual 3
Notation Conventions . 4

2. Loading the Editor/ Assembler . 5
Tape Systems - Level 11 and Model 111 BASIC 5
Tape Systems-Level I . 5
Disk Systems . 6

3. Using the Editor . 7

4. Using the Assembler . 21

5. Sample Programming Session . 31

6. The z-ao Instruction Set . 45

7. Appendices
A. Using the TPSRC Utility (Disk Systems Only) 227
B. ROM and TRsoos 110 Subroutines 228
C. z-ao Status Indicators (Flags) 231
D. Numerical Listing of z-ao Instruction Set 234
E. Alphabetical Listing of z-ao Instruction Set 240
F. z-ao CPU Register and Architecture 246
Index .. 253

INTRODUCTION

Part One:

Introduction
What Is an Editor/ Assembler?
An editor/assembler is a two-part program that lets you communicate with a
computer in its low-level, "native" language, rather than in some high level,
''foreign'' language like BASIC or FORTRAN. We call this native language
''machine-language:'

Using the editor, you enter the machine-language source code, consisting of a
convenient set of abbreviations and symbols. The assembler then converts or
assembles this into object code, which the Computer understands.

But I thought my TRS-80 spoke BASIC!

Well, you're right, it does. But only because it contains a built-in BASIC
interpreter. This interpreter converts or interprets your BASIC programs into
object code, which the computer can understand.

With a Built-In Interpreter, Who Needs Machine-Language?

Well, if you-

• Enjoy learning how things-especially, computers-work;

• Want to do things faster than BASIC will allow;

• Want to make the most efficient use of your Computer's memory;

• Want to modify the way your computer inputs and outputs data

- then you need machine-language. (Of course, there are plenty of other
reasons you may want to use it.)

The Series-I Editor/ Assembler
There are two versions of this software package, one for tape and one for disk
systems.

Tape Version
Three cassette tapes are included. One contains EDTASM, which is the Editor/
Assembler. Level II and Model III BASIC customers may load and run this tape
using BASIC's SYSTEM command. The second tape contains SYSTEM. This
program is for Level I customers with a minimum of 16K memory. It is loaded

1

SERIES I EDITOR/ASSEMBLER

with the CLOAD command, and prepares the Level I Computer to load the
EDTASM tape. The third tape contains a sample program for tape systems with at
least 32K of RAM. If you have only I6K, you can still type in and use the sample
program given in Section 5.

Disk Version
Two diskettes ate included. There is one in Model I TRSDOS format and one in
Model III.

The disk version software includes three programs:

• EDTASM, the Editor/Assembler program
• SAMPLE/SRC, a source listing of all the Z-80 instructions

• TPSRC, a utility to read source tapes written by the tape version of the Editor/
Assembler and two write object "SYSTEM" tapes.

The Series-I Editor/Assembler is especially good for beginners of machine
language programming. Its commands and features are fairly simple, and it does
not require that you understand advanced programming concepts. On the other
hand, experienced programmers will find this editor/assembler a workable tool
for all but the most complex, large-scale applications.

Features

Editor Features
• Automatic line numbering for convenient source-code entry.

• Line renumbering command with automatic renumbering if necessary.

• Single-letter commands plus optional parameters.

• Global search capability for changing your source text.

• Source text may be saved on tape or disk, depending on your computer
system.

• Source files on tape or disk may be loaded or "chained" in memory.

• Source text may be listed to the printer.

Assembler Features
• Controlled by a single-letter command with optional switches.

• Options include: wait on error, no symbol table, list to printer, and trial
assembly with no object code output.

• Supports labels up to six characters long.

• Eight pseudo-ops.

• Resides in memory with the Editor, so you can easily go back and forth
between editing and assembling.

2

INTRODUCTION

Scope and Organization of This Book
In this manual, we will show you how to use the Editor/ Assembler. Along the
way, we'll cover a few principles of assembly-language programming. We'll
include a sample program. Even if you don't understand assembly-language
programming, you should be able to try out this sample program.

In the next section (Section 2), we'll tell you how to load the Editor/Assembler.
We'll assume you already know how to start-up your Computer, and to get it to
the BASIC READY level (cassette systems) or to the TRSDOS READY level (disk
systems). There are separate loading instructions for:

• Tape systems - Level I

• Tape systems - Level II and Model III BASIC

• Disk systems - Models I and III TRSDOS

In Section 3, we'll show you how to use the editor. This section is organized for
ease of use the first time through. For quick reference later on, there's an
alphabetical summary of all editor features at the end of Section 3.

In Section 4, we describe the assembler. Here we'll simply explain the assembly
command format and syntax. You'll need this information when you get around
to writing your own assembly-language programs.

In Section 5, we present a sample assembly-language program. We go through
all the procedures, from entering the program to loading and executing the
assembled version.

Section 6 is a complete z-so instruction set-the native language of your TRS-80.

This manual is written for use with Model I or III systems using either tape or
disk storage. There are a few operational differences, depending on which
system you have. In these cases, we have written separate instructions for the
differing systems. Follow those pertaining to your Computer.

What else do I need?
To write your own assembly-language programs, you'll need more information
than is cont~ined in this manual. If you know z-so or another assembly
language,- this manual will probably be sufficient. But if you've never done any
assembly-language programming, you'll need to do some further study.

Radio Shack sells an ideal book for future TRs-so assembly-language
programmers: TRS-80 Assembly Language Programming, by William Barden, Jr.
Its catalog number is 62-2006. Although it was written specifically for the
Model I TRS-80, most of it applies as well to the Model III.

3

SERIES I EDITOR/ASSEMBLER

Notation and Special Terms Used in This Book

Notations
COMPUTER TYPE

italic type

[optional
information]

Special Terms

Indicates material that is input to or output from the
Computer. Note: All computer prompts in this manual
are given in uppercase.

Represents variable information that you provide in a
command. (i.e., file names, line numbers, etc.)

Key which you should press. These will not be visible
on the screen.

Square brackets enclose optional parts of a command.

source code (or text) An assembly-language source program you have loaded
from tape or disk or typed.

source file An assembly-language source program you have saved
on tape or disk.

object code The output from the assembler, i.e., coded z-so
instructions.

object file Object code stored on tape or disk so that it may be
loaded and executed.

4

LOADING THE EDITOR/ASSEMBLER

Part Two:

Loading the Editor/ Assembler
Tape Systems-Level II and Model ID BASIC
The Editor/ Assembler is a machine-language program stored on tape at 500
baud. Its file name is EDTASM.

1. Turn on your Computer and press CERIEID to the prompt for memory size. (In
Model III systems, first type L to the CASS? prompt.)

2. Get your recorder ready to play the Editor/Assembler tape.

3. 'fype SYSTEM CERIEID, then EDTASM CERIEID. The Computer will begin loading
from the tape. After a successful load (takes about 2 minutes), the*? prompt
will reappear.

4. Type/ CERIEID. The Editor/Assembler starts by displaying a heading followed
by an asterisk at the beginning of the next line. The asterisk is the prompt,
telling you the Editor/ Assembler is waiting for a command.

Now skip to Section 3.

Tape Systems-Level I BASIC
Before you can load the Editor/Assembler tape, you must get your Computer
into a "system" mode. The SYSTEM tape does this.

1. Turn on your Computer. It should be in the READY mode.

2. Get your recorder ready to play the SYSTEM tape.

3. Type CLOAD CENHID. The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), a II PRESS ENTER WHEN CASSETTE
IS READY" will appear on the next display line. Your Computer is now in
the system mode.

4. Prepare the recorder to play the EDTASM tape.

5. Press CENHID. The Computer will begin loading from the tape. After a
successful load (takes about 2 minutes), the Editor/Assembler will start by
displaying a heading followed by an asterisk at the beginning of the next line.
The asterisk is the prompt, telling you the Editor/ Assembler is waiting for a
command.

5

SERIES I EDITOR/ASSEMBLER

6. Volume setting may need to be adjusted for a successful load.

Now skip to Section 3.

Disk Systems
The program file name for the Editor/Assembler is EDTASMtCMD .

. 1. Under TRSDOS READY, type: EDTASM (ifflID.

2. The Editor/Assembler will start by displaying a heading, followed by an
asterisk on the next line. The * is the prompt, indicating the Editor/
Assembler is waiting for a command.

6

USING THE EDITOR

Part Three:

Using the Editor
Assuming you have just started the Editor/ Assembler, it is displaying an asterisk
on the screen. This is the "prompt." It tells you the Editor/Assembler is waiting
for a command.

The Editor consists of commands that allow you to create, edit, save and load
your source programs. We'll divide these commands into three groups:

• Text-handling-creating and modifying the source program.

• File input/output-saving the program on disk or tape and loading it from disk
or tape.

• MisceHaneous - getting the memory status, exiting from the Editor/
Assembler.

Special Terms
Before using the commands, we need to define a few special terms used in this
section.

"text" is the information (source program) that you have entered into the
Computer. The insert command allows you to begin entering text one line at a
time, pressing CENTER) at the end of each line. The Editor automatically numbers
each line.

''text buffer'' is the area in memory where your text is stored.

"current line" is the line most recently entered, displayed, or referenced in a
command.

"file" is the source text stored on tape or disk.

"file name" is the name given to the file. In tape systems, the file name consists
of from one to six letters or numbers. In disk systems, the file name follows the
rules of TRsoos file specifications (for full details, see your TRSDOS reference
manual):

filename [/ext] [.password] [:d]

"inc" or "increment" refers to the number which is used to compute
successive line numbers for your text. When you start the Editor, the increment
equals 10.

7

SERIES I EDITOR/ASSEMBLER

"line ref" or "line reference" is the way you specify a single line in your text.
A line reference may be any number from O to 65529, or any of the following
special symbols:
• First line in the text buff er

The current line
* The last line in the text buffer

"line range" indicates ·a range of lines in your text file; it is a pair of line
references separated by a colon.

line-ref:line-ref

"TOF" and "EoF" -refer to top of file (first line) and end of file (end of file).
The Editor will use these abbreviations in certain messages to you.

Sample Commands
These examples are simply to show the use of the special terms and notation.
The commands are explained later in detail.
P 100 "Prmt line 100."
P •: , "Print text from the first line to the current line.
D , "Delete the current line."
I line ref.,inc "Start inserting at line, using inc as an increment between

lines. ("line ref." and "inc" are variables you replace with
appropriate values.)

A Few Words about Spaces
In general, spaces are not significant inside editor commands. You may use
them or omit them. Exception: No spaces inside a file name, line reference or in
the command (El-Find.

Special Keys

CE8i1ID To complete a command or a line of text, you must press this
key.

LEFT(IBm'.)(!)

CID

To cancel a command or to stop inserting text, press this key.
The line that the cmK) is pressed is not saved. Press cmK)
on the line following the last line.

Press this key to see the previous line of text.

Press this key to see the next line of text.

This key erases the previously typed character.

This functions as a tab key. You will use it while inserting
text. The tab positions are spaced eight columns apart.

This erases the line you have been typing.

This causes a pause in a listing or printout. Press any key to
continue.

Editor Commands
We'll cover the commands in a typical sequence in which you might use them.
For an alphabetical summary, see the end of this section.

8

USING THE EDITOR

Text Handling Commands

Inserting Your Text

When the asterisk is displayed, you may type in a command-not your source
text. To enter source text, you must get into the insertion mode.

First, to get your Computer "in step" with our examples, type D #:* (ENTER).
That erases any text that you might already have entered into the text buff er.

Now we'll go into the insertion mode. Type I (ENTER). The Computer will
display 00100. All we do is type in text for line 100 and press (ENTER). The
Computer will automatically provide the next line number.

00100

00110

ANY CHARACTERS FOLLOWING A SEMI-COLON (;) IS A
COMMENT (ENTER)

We may continue like this until we finish entering the text. Rem~mber to press
(ENTER) at the end of each line.

00110 ; PRESS - > AT THE START OF THE NEXT LINE CE.mBJ
00120 RET ; A 1)ERY SHORT PROGRAM CE.mBJ
00130

In line 120, we pressed tab CU once at the beginning of the line, and once after
RET. Tabs are very important in source programs; they are used instead of spaces
to separate the standard fields in an assembly-language program. (We'll explain
further in part 4.)

That's all the text we want to type in for now, so press~- The asterisk will
reappear on the next line.

Displaying Your Text

To see the text, use the Print command. For example: P #:* (ENTER). This tells
the Computer to display all the lines in the text buffer. To see a single line,
specify that line, as in: P 100 (ENTER). Another way to display lines one at a time
is with@ (previous line) and~ (next line).

If you omit a line reference, the Computer will display a screenful of lines,
starting at the current line. This is a good way to look at a large text file, one
screenful at a time. Simply press P (ENTER) to see the next screenful.

Note: If the total file is to be displayed you may execute T CE.mBl prior to Print
command to insure that current line is TOF.

Getting a Hard-Copy of the Source Program

To output to a line printer instead of to the display, substitute ''H'' (hard copy)
for "P". For example, the command H #:* prints out the entire source program.
If printer is not ready press (BREAK) to return to command line.

(For instructions on getting hard copy of an assembled program, see Section 4.)

9

SERIES I EDITOR/ASSEMBLER

Adding Lines between Existing Lines

Suppose you want to add a line between lines 100 and 110. Use the Insert
command, but specify a starting line number between 100 and 110:

I 1fll5

11111111115 iTHIS LINE IS ADDED (ENTER)
111111115 (BREAK)

*

When you pressed (ENTER) for line I 05, the Computer used the current increment
(10) to generate line 115, which will not be between 100 and 110. To insert more
than one line between any two lines, you can specify an increment of 1.

For example,

I 11115 , 1 CENTER)
11111111118

Line 105 is already in use, so the Computer gives you the next number, using an
increment of 1:

11111111118 iWE'LL JUST TYPE IN A FEW LINES~
11111111117 iNOTICE THAT THE INCREMENT OF 1 IS STILL IN USE (ENTER)
11111111118 iWHAT WILL HAPPEN WHEN WE REACH LINE 11111? (ENTER)
11111111118 iTHAT LI NE IS ALREADY IN USE , , , (ENTER)
11111111111 i, , , BUT EDTASM GI !JES YOU THAT NUMBER ANYWAY, (ENTER)
111111111 (BREAK)

A line "collision" was about to occur when you entered line 110, since that
number was already in use. So the Editor automatically renumbered all lines.

To begin inserting lines at the end of the file, use the Bottom command,
B (ENTER). This makes the current line the last line.

Changing a Line in Your Text

To make a change within a line of text, use the Edit command. This puts you in
a special intra-line edit mode in which several useful functions are available. To
begin editing a line, type E followed by the line number (or line symbol "# ",
"*", ".")and press~- The Computer will display the line number
followed by the cursor (blinking block or underline). This is your "working
copy" of the line. Changes you make will not take effect until you exit from the
intra-line edit mode.

To exit from the intra-line edit mode, press~ or E ~ and changes are
saved. Press~ or Q ~ and the line remains in its original form.

10

USING THE EDITOR

Here are the functions available in the intra-line edit mode:

([)

n (SPACEBARl

cu

n CS) e

n@

n CK) e

n ©cl ... en

®

(I) newtext

00
(ID

~or([)

(BBEAKl or([)

Lists the line in its current form and starts a new working
copy on the next line.

(Spacebar) Moves the cursor forward n spaces, showing the
next n characters in the line. If n is omitted, 1 is used.

Moves cursor back one space in the line, but does not erase
the character from the working copy.

(Search) Positions the cursor at the nth occurrence of
character e, counting from the current cursor position. If n
is omitted, positions to the first occurrence after the current
position.

Deletes the next n characters. If n is omitted, 1 is used.

(Kill) Deletes all characters up to the nth occurrence of
character e. If n is omitted, deletes up to the first
occurrence.

Changes the next n characters to characters cl ... en.

(Again) Cancels all changes made and lets you edit the line
again.

Insert newtext. Insertion will continue until you press
(SHIFT)@ or~- While inserting, the CD key will erase
a character, and the (SPACEBAR) will insert a space. You must
exit from this insertion function before you can use any of
the other editing functions.

(Extend) Begin inserting at the end of the line.

(Hack) Delete remainder of the line and begin inserting at
the current position.

Exits to the * command level. The changes you made will
take effect.

(Quit) Exits to the* command level. The changes you made
will be canceled.

The best way to learn to use these edit functions is to experiment with them. For
example, type E (ENTERl to start editing the current line. The Computer will
display the line number. Press ([) to see the line in its current form and start a
new working copy. Now try each of the commands listed above.

Remember: To exit from the intra-line editor at any time, press~- To stop
the insertion function but continue editing, press CSHIIll @.

11

SERIES I EDITOR/ASSEMBLER

Replacing a Line

You cannot use the Insert command to replace a line, because the Computer will
always renumber the lines in case of a line collision. To replace a line, type R
followed by the line reference and press (ENTER).

For example, to replace line 100, type: R 100 (ENTER). The Computer will
display 0 0 10 0. Go ahead and type in the new text for this line. When you press
(ENTER), the Computer will act just as it does in the line insertion mode: it will
compute a new line number using the current increment and renumbering the
lines if necessary to avoid a collision. From this point on, you are inserting, not
replacing. Only line 100 is replaced.

Deleting Lines

To delete a range of lines, type O line range. For example,
D 100 Deletes line 100
D , Deletes the current line
D 100: 120 Deletes all lines from 100-120

Deletes all lines (first to last)

Finding a String within Your Text

The Find command searches through your text for any one word string you
specify, and tells you which lines contain the text.

Suppose you have a large text file in memory, and you want to change each
occurrence of "LBL" to "LABEL." The Find command will identify each line
that contains ''LBL.'' Simply type: T CftfliID to position the current line to the
beginning of the text, then type FLBL Cftfl'.EID. The Computer will search for the
string of characters immediately following the F and ending with the carriage
return ((ENTER)).

The editor will print the line number of the first occurrence of LBL. That line
becomes the current line. You may begin editing it by typing E Cftfl'.EID.

To find subsequent occurrences of LBL, simply type F Cftfl'.EID. The editor
continues searching at the current position and remembers the string being
searched.

Remember: (1) Type in the search string immediately after the "F" with no
spaces, unless the search string starts with spaces. (2) The Find command
begins searching at the current line, so set the current line to TOF first if you
want to search through the entire text.

Renumbering Your Text

After inserting lines (and having them automatically renumbered), you may
want to renumber them "manually." The Number command does this. Type N
start-line, increment Cftfl'.EID. Start-line will be the lowest-numbered line in the
renumbered program.

12

USING THE EDITOR

For example, the command: N 1000, 10 (ENTER) renumbers the text 1000,
1010, 1020, etc.

After renumbering, the current line is the last line in the file, and the increment
is what you specified in the N command.

If no start line is typed, the renumbering will begin with the current line. If no
increment is specified, 10 is used.

Source File Input/Output Commands

In this section, we'll show how to save a source program and then reload it.
(For instructions on outputting and loading an object file, see Section 4.)

There are three general groups of editor vo commands:

• Writing the source program to tape or disk

• Loading the source program from tape or disk

• Printing the source program on the display or on a line printer. We've already
described these commands (Hand P).

Saving the Source Program

Once you have typed in and edited a source program, you should save it on tape
or disk. That way, if you ever need to modify the source program, you won't
have to retype it; you can simply load it and make changes.

The tape version of Editor/ Assembler always assumes you want tape vo, and the
disk version assumes you want disk 1/0. (Disk systems may load source tapes
via the TAPESRC utility, described later in the appendix.)

Note to Model III Customers: All tape vo is done at 500 baud, regardless of the
cassette baud rate you selected when you started up the Computer.

Tape Systems

1. Using a blank cassette tape, put your recorder into the record mode.

2. Type Wfile (ENTER). Use a file name from one to six characters. You may omit
the file name, in which case the tape file will be named N0NAME.

Example:

W MOVE (ENTER)

3. The Editor/Assembler will prompt you to get the cassette recorder ready. Be
sure it's in the record mode, then press (EfflID. The Editor/ Assembler will
write the text onto the tape.

4. After writing the tape, the Editor/Assembler will return to the command
mode (asterisk).

5. Make at least one additional tape copy of the program.

13

SERIES I EDITOR/ASSEMBLER

6. Remove the tape from the recorder and label it. Be sure to identify it as a
source tape.

Disk Systems

1. Type W file (ENTER). For file, use a standard TRSDOS file name with an optional
password and drive specification. The Editor will automatically add the
extension /SRC to the file name. To override this, include a different extension
in the file specification.

You may omit the file name, in which case the file will be called NONAME/

SRC.

Example:

W MOVE (ENTER)

writes the source program into the file MOVE/SRC.

2. After writing out the file, the Editor will return to the command mode
(asterisk).

Loading a Source Program

Tape Systems

1. Prepare the recorder to play the source tape.

2. Type L file (ENTER). For file, substitute the correct file name. If there are
several files on the tape, the Editor will search through them until it reaches
the one you named. You may omit the file name, in which case the first file
on the tape will be loaded.

Before the Editor starts loading from the tape, it will prompt you to get the
cassette recorder ready. Press~ when ready.

3. After loading the source program, the Editor will return to the command
mode (asterisk).

Disk Systems

1. Type L file~- For file, specify the file in standard TRsoos form. If the
specification you give does not include an extension, the Editor will
automatically use the extension ISRC.

14

You may omit the file specification. The Editor will then attempt to load a file
named NONAME/SRC.

USING THE EDITOR

(If you already have a source program in the text buffer, the Editor will
warn you:

TEXT IN BUFFER, CHAIN FILES?

If you want to add the disk file onto the end of the current text in memory,
type Y (ENTER). This will chain the new file onto the end of the file in memory
and automatically renumbers the total file. If you don't want to "chain" the
files, but wish to erase the current file and load the new one, type N (ENTER).)

2. After loading the file, the Editor will return to the command mode (asterisk).

Miscellaneous Commands

Determining the Memory Status

To find out the size of the current source program and the amount of free
memory, type M (ENTER). The status will be shown in bytes.

Exiting from the Editor/ Assembler

The quit command (Q (ENTER)) takes you out of the Editor/ Assembler and back
to TRSDOS or BASIC (if you are in a level II computer). Before using this
command, be sure to save your source program, if desired, because you won't
be able to recover it simply by restarting the Editor/ Assembler.

15

SERIES I EDITOR/ASSEMBLER

Editor Error and Warning Messages

16

BAD PARAMETER (s) This indicates that you gave the
editor an invalid command.
Check the syntax used, and the
values of parameters given (they
may be out of range).

BUFFER FULL The area assigned to text
storage is full. You may be able
to split the source text into two
modules.

LI NE NUMBER TOO LARGE During the generation of new line
numbers (insertion or line
renumbering) a line number
greater than 65529 was needed.
This is too large. Use a smaller
line number increment.

NO SUCH LI NE A reference was made to an
unused line number.

NO TEXT IN BUFFER All commands except load,
insert, memory-status, and quit
require some text to be in the
buffer.

STRING NOT FOUND You issued a find command and
the editor could not locate the
string you specified. Be sure you
had the current line set properly
(find begins searching at the
current line number).

USING THE EDITOR

Editor/ Assembler Alphabetical Summary

Special Keys

Symbols and Abbreviations

*

line ref

line range

inc

Executes the current command.

Cancels or interrupts a command.

Erases the last character typed.

Displays the previous text line.

Displays the next text line.

Erases the entire line. (Use left
shift key only)

Tabs forward eight spaces.

Pauses execution of a command;
press again to continue.

Escapes from the character
insertion command in the edit
mode. (Use left shift key only)

First line in text

Last line in text

Current line in text

A single line number or line symbol
(#,*,or.).

A pair of line refs separated by a
colon (line ref : line ref)

An increment between lines.

17

SERIES I EDITOR/ASSEMBLER

Commands

A [file] Lswitch . ..] Assemble. Switches are: LP (line
printer, WE (wait on error), NL (no
listing), NS (no symbol table), NO

(no object code output).

8 List bottom (last) line of text.

D [line ref or line range] Delete line(s).

E [line ref] Edit line ref.
Subcommands
(!J Lists working copy of line
n (SPACEBARl Advance n spaces.
CI) Backspace 1 space.
n CI) C Search for nth occurrence of c.
n (ID Delete next n characters.
n{K)c Kill up to nth occurrence of c.
n © c1 ... en Change next n characters to

c1 ... en.
® Cancel changes and start again.
(I) newtext Insert newtext. Press CEBIEB) or

(IHm)@toquit.
00 Extend line.
(ID Hack rest of line and begin

inserting.
CEBIEB) or CE) Exits to the command level;

changes take effect.
(BREAK) or (ID Cancels changes and quits editing.

F [text string] Find the text string immediately
following the letter "F"; or find the
current text string. (No space
between([) and text string).

H [line range] List lines on the printer. If printer
not ready use (BBEAK) to recover.

I [line ref] [,inc] Insert at line ref using inc. If no
line ref has been determined 100
is used.

L [file] Load a source file.

M Display memory status.

N [line ref] Linc] Renumber text.

p [line range] List lines on the display.

18

Q

R [line ref]

T

w [file]

Quit Editor/Assembler; return to
TRSDOS or BASIC (Level II).

Replace line and continue in the
line insertion mode.

List top (first) line of text.

Write a source file.

USING THE EDITOR

19

USING THE ASSEMBLER

Part Four:

Using the Assembler
In Section 3, we showed you how to type in, edit, and save a source program.
For a source program, we used an arbitrarily chosen text.

Now we are ready to discuss the assembler- the software that converts your
source text into object code that can be understood by the TRs-so·s Z-so
microprocessor, and writes this object code to a tape or disk file. We'll break
this section up into three parts:

A. The Assemble command- syntax, options, file output, error conditions, etc.

B. Assembler language-definitions, syntax, input/output format, etc.

If you're new to assembly language, you don't have to read all this now. You
may skip to Section 5, which presents a sample programming session. This will
give you hands-on experience with the Editor/ Assembler. Then, when you come
back to this section, you'll have a better idea of what it's all about ...

The Assemble Command
You enter the Assemble command at the command level (asterisk). It consists
of the abbreviation ''A'' followed by a space and an optional file name and
optional switches. (We call them "switches" because they turn various
functions on and off.)

There are various combinations of spaces and commas that will work in the
assemble command. For simplicity, we'll stick with one workable set of rules
for command syntax.

A [file] [,switch . ..]

The file name and switch are optional. (If no file name is used, you must still
type in a space after the "A:') Every switch used must be preceded by a
comma. Spaces before or after the file are acceptable and have no effect.

A source program must be originated in RAM or loaded into RAM before it can be
assembled.

21

SERIES I EDITOR/ASSEMBLER

For example:

A ZAP,NS1NL,WE ~

"ZAP" is the file name; "Ns", "NL" and "WE" are switches. The commas are
required. The meaning of this and the following commands will be explained in
the following pages.

A ,NO ,WE 1NS (ENTER)

No file name is given.

As another example:

A (SPACEBARJ ~

No file name or switches are specified.

FileNmne
The file name you specify will be assigned to the tape or disk object file. If you
omit a file name, "NONAME" will be used. (For further details, see File Output
later in this section.)

Switches
If you don't specify any switches in your assemble command, the Assembler
will do the following:

• Print the assembly listing on the screen'

• Print error and warning messages in the listing without pausing
• Print a symbol table after the listing is completed

• Output the object code to tape or disk, using the file name you specified (or
"NONAME" if you omitted one)

Here are the switches available. You may use as many as you want in any order.
Remember to put a comma before each switch used.

22

LP (Line printer) Output listing, error messages, and
symbol table to the line printer, not to the display.

WE

NL

NS

NO

(Wait on error) Pause after each error message;
operator presses cmnm to continue.

(No listing) Don't output an assembly listing.

(No symbol table) Don't output a symbol table.

(No output) Don't output any object code.

USING THE ASSEMBLER

File Output-Disk Systems
If you do not specify the NO switch, and if no terminal errors occur during the
assembly, the Assembler will write the object code to the disk file you specify.

Use a standard TRSDOS file name with an optional password and drive
specification. The Assembler will automatically add the extension ";cMo" to
the file name. To override this, include a different extension in the file
specification.

If you omit a file specification, the Assembler will use ''NONAME/CMD'' as the
object file.

Examples:

A ZAP ,NO ,WE

Waits on errors, does not output object code.

A ZAP ,LP

Outputs the assembly listing to the printer, outputs object code to ZAPICMD.

Use of Object Files

Every object file is stored in a special format that allows it to be loaded and
executed by TRSDOS. An object file cannot be loaded by the Editor/Assembler.
(Since it is no longer in text form, the Editor/Assembler can't do anything
with it.)

To load and execute an object file program while you are in the TRSDOS READY

mode, type the file name and press (ENTER). If the extension is ";cMo;' you
don't need to include it in the file name.

To load an object file and return to TRSDOS READY, type LOAD filename CEBifID.
In this case, you must include the extension even if it is '' 1CMD .'' For further
details on the use of object files, see Section 5.

Now skip ahead to ''Asseml:?ler Error Messages.''

File Output-Tape Systems
Note to Model III Customers: All tape output is done at 500 baud.

If you do not specify the "No" switch, and if no terminal errors occur, the
Assembler will write the object code to cassette tape, using the file name you
specify. The file name may be from one to six characters long. If you omit one,
"NONAME" will be used.

Before writing the tape, the Assembler will prompt you to get the cassette ready.
Using a blank tape, prepare the recorder to record; when ready, press CEBifID,
The Assembler will then write the tape.

Make at least two copies of each object file. Remove the cassette and label it as
an "object" tape.

II

23

SERIES I EDITOR/ASSEMBLER

Use of Object Tapes
Object tapes are stored in a special format for loading via the SYSTEM command.
(Level I systems must first load the SYSTEM tape; then the object tape.) An
object file cannot be loaded by the Editor/ Assembler. (Since it is no longer in
text form, the Editor/Assembler can't do anything with it.)

To load an object tape while in BASIC, type: SYS1EM CEID1ii) then.filename (ENTER)
. After the tape has been loaded, you may press (l8UK) to return to
BASIC, or/ address CEID1B) to begin execution at the specified address. If you
type/ CElilID, omitting the address, an address specified on the tape itself will
be used. (For details, see the Section 5.)

Assembler Error Messages
Four kinds of errors ntay occur after you enter an assemble command.

1. Command errors. If there is an error in your command, no assembly will be
attempted. The Assembler will display the message "BAD PARAMETER(S)'

2. Terminal errors. During assembly, an unrecoverable error occurred. The
assembly is cancelled.

The only terminal error is ''SYMBOL TABLE OVERFLOW.'' This occurs when
there is not enough memory to handle the symbol tables required for
assembly. Use a machine with more memory (if possible), or break the
program up into modules and assemble them separately.

3. Fatal errors. One of the source lines contained an error. No object code is
generated for the offending line, but the assembly continues. Here are the
terminal errors:

BAO LABEL

EXPRESSION ERROR

ILLEGAL ADDRESSING MOOE

ILLEGAL OPCODE

MISSING INFORMATION

24

Invalid sequence of
characters were used
as a label. (See
"labels:')

An invalid expression
was used as an
operand. (See
"expressions:')

One of the operands
used is illegal with the
specified Z-80
instruction.

Unrecognizable
characters were used
in the opcode
(mnemonic) field.

Mnemonic or
operands are missing.

USING THE ASSEMBLER

4. Warnings. A probable error occurred, but the assembler will generate object
for the offending line anyway. The code may not be what the programmer
intended. Warning messages are:

BRANCH OUT OF RANGE

FIELD OVERFLOW

MULTIPALLY DEFINED SYMBOL

MULTIPLE DEFINITION

NO END STATEMENT

UNDEFINED SYMBOL

Assembly Language

Relative branch
instruction outside of
the range - 126 to
+ 129 bytes.
Instruction is
assembled to branch
to itself.

An operand (number
or expression) is out
of range for the
specified instruction.
The operand is set
equal to zero.

A label has been used
to identify two different
places or represent
two different values.
All but the first
definition will be
ignored.

A duplicate operand is
used.

No end statement was
found.

The operand field
contains a symbol
which has not been
defined. A value of O
is used for this
symbol.

In the first part of Section 4, we discussed the use of the assemble command. In
this part, we'll discuss Assembly as a programming language.

An assembly program is made up of source statements. Each source statement
consists of up to four fields. A "field" is a range of columns on the display.
We'll agree to consider column 1 to be the first column of source text. Column 1

25

SERIES I EDITOR/ASSEMBLER

is the first column after a space that follows the line number. Source statements
are written using the 1 (insert) command.

Field Column Range

Label 1-6
Mnemonic 9-15
Operand(s) 17-31
Comment May begin anywhere but must be

preceeded by a semi-colon(;).

Labels are used to identify individual source statements. A label may be from
one to six characters. It must start with an alphabetical character. For example:

MOlJE
LOOP
LOOP1
CLS
Tl

are all valid labels. Labels must start in column 1.

Mnemonics are the abbreviations used to represent z-so operations, for example:

LO Load
DEC Decrement
RET Return

Mnemonics are also called "operation codes" or "opcodes." Mnemonics must
start in column 9.

Operands are the values used by certain assembler statements. An operand may
be a z-so register or 110 port, or a one- or two-byte value. For example:

LO A,3

tells the z-so to load into register A the number 3. ''A'' and '' 3'' are operands.
Symbols may be used in place of actual numbers. For example:

LO HL,VIDEO

tells the z-so to load into register HL the value for VIDEO (defined elsewhere in the
program). The first operand must start in column 17.

Comments document the program. They are ignored by the assembler. A
comment may begin in any column of a source statement, subject to the
following limitations: All comments start with a semi-colon, which tells the
assembler to ignore the rest of the line.

When you type in a source program, use a tab (CU key) to separate the fields,
not spaces. This method is faster and saves memory. Furthermore, the tab
settings correspond to the first columns in each field.

26

USING THE ASSEMBLER

Example:

00100 i THIS IS A SAMPLE PROGRAM
00110
00120 iLABEL MNEM, OPERAND(S) COMMENT
00130 ORG 32700 iFOR 18K MACHINES
001ll0 BEGIN LO HL,3C00H ; (HU =l) IDEO RAM)
00150 LO A''*'
00180 LO (HU ,A iWRITE ASTERISK TO lJIOEO
00170 RET iRETURN TO CALLER
00180 END iEND OF SOURCE PROGRAM

Lines 100-120 are comments. Lines 130-170 consists of assembly-language
statements followed in most cases by comments.

There should be one tab character at the end of each field. Spaces (entered via
(SPACEBAR) should only be used inside comments and inside character constants.

Assembler Statements
There are three kinds of assembler statements:

I. Pseudo Operations. Sometimes called "pseudo ops;' these statements are not
translated into z-so object code. They control various functions of the
assembler itself, such as defining labels, reserving memory, and setting the
programs origination address. Pseudo ops must begin in column 9.

2. Commands. These are also directed at the assembler. The Series I Assembler
has two assembler commands, *LIST ON and *LIST OFF (described later). These
commands must begin in column 1.

3. z-so Operations. These consist of a mnemonic (sometimes called an operation
code or "opcode") sometimes followed by one, two or no operands. They
are translated directly into object code. Some z-so instructions translate into
one byte of object code; others may translate into two, three, or four bytes.
The opcode must begin in column 9. Tabbing one time moves to column 9.

Special Terms and Abbreviations for Operands

nnnn or nn Represents a number. For one-byte numbers, nn is used. For
two-byte numbers, nnnn is used. (Two-byte numbers are
assembled into two's complement binary values. First comes the
least significant byte (LSB), then the most significant byte
(MSB)). A number may be any of these:

Decimal number

Hexadecimal number nnnnH or nnH. The suffix "H" indicates
hexadecimal; if the number starts with A-F, prefix a O to it, as
in OFOH.

Octal number: nnnnnQ or nnno. The suffix "Q" or "o"
indicates octal.

27

SERIES I EDITOR/ASSEMBLER

Current address, "$" (The address in the program counter will
be used in place of the$).

Character constant: Any character inside single quotes. The
constant is converted into its ASCII character code. For example,
'A' is converted into 65.

Any numeric expression (see "Expressions").

Pseudo-Operations

ORG nnnn

(Originate) This sets the address reference counter. It determines where
subsequent z-so code and data will reside in memory. If no ORG statement is
given in your source program, the address reference counter will be set to 0.

ORG should be used before any Z-80 instructions or data storage pseudo ops. It
may be repeated. The programs in this manual are ORGed at decimal 32512
(hexadecimal 7FOO). All subsequent ORG's are absolute.

symbol EQU nnnn or nn

(Equate) This assigns the value nnnn to the symbol. Each time the symbol is
used as an operand in the source program, the assembler will replace it with
nnnn. The EQU statement may appear anywhere in the program. A particular
symbol may be equated only once.

label DEFL nnnn

(Define label) This assigns a temporary value nnnn to the specified label. The
value may be changed as often as required within the source program.

END nnnn

This indicates the end of a source program. If there are any following lines in
the program, they will be ignored. The address nnnn sets the entry point to the
program. If omitted, the entry to TRSDOS (disk systems) or BASIC (cassette
systems) will be used. For details, see section 5.

[label] DEFB nn

This defines the contents of the current address to be nn. This pseudo op allows
you to initialize the contents of one-byte storage locations used by the program.
nn may be a one-byte value or a character string enclosed in single-quotes.

[label] DEFl,,I nnnn

This defines the contents of the current two-byte address to be nnnn. This
pseudo op allows you to initialize the contents of two-byte storage locations
used by the program.

[label] DEFS nn

(Define storage) This reserves nn bytes of memory, starting at the current
address. (The reference address will be incremented by nn before the next

28

USING THE ASSEMBLER

source statement is assembled.) This pseudo op allows you to reserve space for
buffers, parameters, etc.

[label] DEFM string

(Define message) This stores the specified string of characters, beginning at the
current address.

Assembler Commands
The *LIST command allows you to suppress parts of a source listing. Error
messages and the offending source statements will still be listed. These
commands are very useful when you are debugging long programs, because the
parts of the program already corrected do not need to be listed. You may also
want to use them to suppress the listing of long tables of data contained in
programs (e.g., DEFM strings).

The asterisk (*) portion of the *LIST ON and *LIST OFF command must be in
column one.

*LIST OFF

Has no effect on the assembly, but turns off the assembly listing.

*LIST ON

Has no effect on the assembly, but turns the assembly on again (after *LIST OFF).

Using Expressions as Operands

The assembler will accept an expression in place of any numeric operand.
Expressions include symbols, numeric or string constants, and combinations
of these using the arithmetic and logical operators listed below.

+ and - Addition and subtraction. Example:

&

<

LD HL ,1JID+80H

Negation. Example:

LD HL,VID-1
LD HL , -1 (0 understood)

Logical AND. Example:

LD A , (HU &0FH

Shift left or right. This operator shifts a value right or left by a
specified number of bits, in this format:

value< nn

If nn is negative, the value is shifted to the right and zeroes fill on
the left. If nn is positive, the value is shifted to the left and zeroes
fill on the right. Example:

LD A,tJAL<Z

29

SERIES I EDITOR/ASSEMBLER

Shifts the v AL two bits to the left and fills with zeroes on the
right.

The Z-80 Instruction Set
Section 6 is a full z-so instruction set. The Z-80 registers and flags available for
the programmer's use and a description of the z-so architecture is in Appendix F.

30

SAMPLE PROGRAMMING SESSION

Part Five:

Sample Programming Session
In this section, we'll take you step by step through the Series I Editor/
Assembler. Our goal will be to create a machine-language subroutine that may
be called from a BASIC program or the disk operating system of your computer.

The machine-language we'll present is simple but useful. Given a source
address, a destination address, and a length-value, it will copy a block of
memory into another area of memory. Doing this with normal BASIC statements
is slow. Doing this with machine-language is almost instantaneous.

Creating the Source Program

Start the Editor/Assembler as explained in Section 2. Then type I CENTER) to get
into the line insertion mode. Now type in the following program, pressing
(ENTER) at the end of each line. (Remember to use TAB to space from the end of
one field to the start of the next field.)

11)11)100 SUBROUTINE COPIES ONE BLOCK OF MEMORY TO ANOTHER AREA
11)0110 ON ENTRY, (SRC) = SOURCE ADDRESS
011)120 <DST> = DESTINATION ADDRESS
11)01311) (LEN) = NUMBER OF BYTES TO MOVE
11)0140 ORG 32512
11)0150 MOlJE LO HL, (SRC l SOURCE ADDR,
00160 LO DE, <DST> DES TI NAT I ON ADDR,
11)121170 LO BC, (LEN) LENGTH
00180 LDIR
011)180 RET
00200 SRC DEFW 0
00210 DST DEFW 0

00220 LEN DEFW 0
00230 END MOVE

31

SERIES I EDITOR/ASSEMBLER

Press~ to quit inserting. Then type P #:* CEBilID to see the entire source
program. If there are any errors, use the edit mode (E command) to correct
the line.

If you have a printer, you may get a hard copy of the text by typing H #:*
(DJIEID.

Now we are ready to make a copy of the source program. We 'II call it ''MOVE.''

Saving/Loading a Source Program (Tape Systems)
Using a blank cassette tape, get the recorder ready to record. Type W MOVE
(Efflffi. Press CEBilID again when you are ready to record. After the tape is
recorded, the Editor/Assembler will return in the command mode (asterisk). It's
a good idea to make a second tape copy.

Now try reloading the program. Delete the text from memory by typing D #:*
(DJIEID. Then rewind the recorder, prepare it to play, and type L MOVE (ENTER).
Press CEBilID again when the recorder is ready to play. After the program has
been loaded, the Editor will return in the command mode. Now skip to the
paragraph titled, Trial Assembly.

Saving/Loading a Source Program (Disk Systems)
Type W MOVE CEBHID. After the file is written, the Editor/Assembler will return
in the command mode (asterisk). The file will be called MOVE/SRC.

Now try reloading the source program. Delete the text from memory by typing
D #:* cnilIB). Then type L MOVE CEBHID. After the source program has been
loaded, the Editor will return to the command mode, listing text and memory
contents.

1Hal Assembly
Now we are ready to see if the program can be assembled without errors. We'll
use the NO (no output) and WE (wait on errors) switches for this purpose.

The source program should be in memory. Type A ,NO ,WE CEBHID. The Editor/
Assembler will put the assembly listing on the screen. If any errors are found,
the listing will be paused. An error message will appear directly above the
offending line. Press any key to continue.

If any assembly errors were found, use the edit mode to correct them, and try
another trial assembly.

If you have a printer, you may request a hard copy of the assembly listing. This
will be preferable to the display listing, since most listings require more than 64
columns per line. To output to the printer, type: A ,NO ,LP cnilIB).

Figure 1 shows the assembly listing generated by our sample program. We've
added callouts to identify the various fields in the listing.

32

SAMPLE PROGRAMMING SESSION

Memory Object Line
Loe. Code Number Label Mnemonic Operand(s)

00100 SUBROUTINE COPIES ONE BLOCK OF MEMORY TO
00110 ON ENTRY I <SRC) = SOURCE ADDRESS
00120 <DST) = DESTINATION ADDRESS
00130 (LEN) = NUMBER OF BYTES TO MOVE

7F00 00140 ORG 32512
7F00 2A0E7F 00150 MOVE LO HL I (SRC)
7F03 ED5B107F 00180 LO DE, (DST>
7F07 ED4B127F 00170 LO BC,(LEN)
7F0B EDB0 00180 LDIR
7F00 cs 00180 RET
7F0E 0000 00200 SRC DEFW 0
7F 10 0000 00210 DST DEFW 0
7F12 0000 00220 LEN DEFW 0
7F00 00230 END MOVE
121111000 Total Errors
LEN 7F12
DST 7F 10
SRC 7F0E
MOVE 7F00

Symbol Table

Figure 1. Sample Assembly Listing

Here are a few comments on the source program (line references are to column
3 of the listing):

Line 140 sets the origination address of the program. We've chosen an address
near the top of memory in a 16K RAM system. If you change this address, be sure
to make the appropriate changes in· the BASIC calling program (presented later).

Line 230 ends the program. Since we gave an operand (MOVE), the Editor/
Assembler will store the value of MOVE as the entry address to the program. If
we had omitted an operand here, the entry address fo the program would have
been set to address OOOOH. (More later.)

Object Code Output

After confirming that the program can be assembled without errors, we are
ready to create the object file on tape or disk. We'll use an assemble command
that outputs object code only.

ANOTHER AREA

SOURCE ADDR,
DESTINATION ADDR,
LENGTH

33

SERIES I EDITOR/ASSEMBLER

Tape Systems

Using a blank tape, prepare the recorder to record. Type A M1WE ,NL ,NS (ENTERl.
Press (ENTER) again when ready. The Editor/ Assembler will write out the object
tape. It's a good idea to repeat this process to get a second tape copy.

Disk Systems

Type A MOVE ,NL ,NS (ENTERl. The Editor/Assembler will create an object file
named MOVE/CMD.

Running the Sample Program

Our sample program, MOVE, may be executed as a BASIC subroutine or as an
independent program.

First, we'll try it as a BASIC subroutine.

Tape Systems (Level II and Mod III only- will not execute in a
Level I machine)

Start BASIC and answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BASIC from using the area where the subroutine will reside.

Now load the subroutine:

Type SYSTEM (ENTER). Prepare the recorder to play the object tape, then type
MOVE (ENTER). After the program has been loaded, the*? will return. Press
(BREAK) to return to BASIC. Now type in the BASIC program given in Listing #1.
(Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copies will be the
length value.

Disk Systems

Start TRSDOS. Under TRSDOS READY, load the subroutine by typing LOAD
MOVE/CMD.

Start BASIC. Answer the MEMORY SIZE question by typing 32511 (ENTER). This
will keep BASIC from using the memory where MOVE resides.

Now type in the program given in Listing 2. (Page 36)

Run the program. Specify any source address, and specify a destination between
15360 and 16383. Specify any length from 1 to 1024. However, the destination
+ length must not exceed 16384.

The program will copy a block of memory beginning at the source onto video
memory beginning at the destination. The number of bytes copied will be the
length value.

34

SAMPLE PROGRAMMING SESSION

Executing a Machine-Language Program Directly

MOVE is a subroutine called from a BASIC program. However, you can also
execute machine-language programs created with the Editor/ Assembler.

Disk System$

Under TRSDOS READY, type in the program name and press~- The program
will be loaded and executed, starting at the address specified in the END
statement of the original source listing (e.g., line 230 of our sample program).
Don't use our sample program this way; it was designed to be called from
BASIC only.

Tape Systems (Level II and Mod III BASIC)

Load the program using the SYSTEM command, as explained previously. After
the program has been loaded from tape, the*? will reappear. Don't press
~-Press/ (ENTER) instead. The Computer will begin executing the program
at the address specified in the END statement of the original source listing (e.g.,
line 230 of our sample program).

Alternatively, you may type I address (ENTER) to override this entry address.

(Don't try this with MOVE; that subroutine should only be called from a BASIC
program like the one we presented.)

Tape Systems (Level I users)

You may load the program using the Level I 'System Loader' tape that came
with your EDTASM. This is accomplished by typing CLOAD. A prompt
'' CASSETTE READY'' will appear on the screen. When the tape is ready to load
press (ENTERJ. Your object program will load at this time. The Computer will
begin executing your program at the address specified in the END statement.

You may write your own "System Loader" and put it at the beginning of each
Level I program. (Refer to Appendix B) Tapes loaded into Level I with the
"System Loader" must be ORGed above 4500H and be created by EDTASM.

1121 POKE 16526,0: POKE 16527 tl 27
20 SRC = 32526
30 DST= 32528
40 LN = 32530
50 CLS
60 INPUT "SOURCE"i s
70 INPUT "DESTINATION" i D
80 INPUT "LEN"; L
80 IF <D<15360J OR (0)16383) THEN 230
100 UL= S: MM= SRC: GOSUB 180
110 IF <D< 15360 J OR ID> 16383) THEN 230
120 IF D+L > 16384 THEN 240
130 UL= D: MM= DST: GOSUB 180
140 UL= L: MM= LN: GOSUB 180

35

SERIES I EDITOR/ASSEMBLER

150 X = USR(0)
180 IF INKEY$="" THEN 180
170 GOTO 50
180 'BREAK NUMBER INTO MSB, LSB
180 MS'Z. = l)L/258: LS'Z, = l)L - (MS'Z, * 258)
200 'PUT DATA INTO MEMORY
210 POKE MM, LS'Z,: POKE MM+1, MS'Z,
220 RETURN
230 PRINT "INVALID DESTINATION": STOP
240 PRINT "DATA BLOCK EXCEEDS END OF VIDEO

Listing #1.

112) DEFUSR = &H7F00
20 SRC = &H7F0E
30 DST= &H7F10
4 0 LN = &H7F12
50 CLS
80 INPUT "SOURCE"i s
70 INPUT "DESTINATION" i D
80 INPUT "LEN" i L
80 IF (0(15380) OR (0>18383) THEN 230
100 VL = S: MM= SRC: GOSUB 180
110 IF <D< 15380) OR <D > 18383) THEN 230
120 IF D+L > 18384 THEN 240
130 VL = D: MM= DST: GOSUB 180
140 VL = L: MM= LN: GOSUB 180
150 X = USR(0)
180 IF INKEY$= 1111 THEN 180
170 GOTO 50
180 'BREAK NUMBER INTO MSB, LSB
180 MS%= VL/258: LS%= VL - <MS%* 258)
200 'PUT DATA INTO MEMORY
210 POKE MM, LS%: POKE MM+1, MS%
220 RETURN
230 PRINT "INVALID DESTINATION": STOP

RAM": STOP

240 PRINT "DATA BLOCK EXCEEDS END OF VIDEO RAM": STOP

Listing #2.

36

THE Z-80 INSTRUCTJON SET

Part Six:

The Z-80 Instruction Set
Notation and Other Conventions
This section includes a detailed description of all the z-so assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no·
operands at all. Other instructions have one or two operands. Anything which
is capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LD r,r'

LD is the mnemonic for the Load instruction. If you wish to move the contents
of register H into register A, the actual source code is

LDA,H

This should be read as "load register A with the contents ofregister H."

A detailed explanation of the operand notation is given below, but in general
you should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC
HL means that 1 is to be added to the HL register pair. The instruction INC (HL)
means that 1 will be added to a number in memory whose address is found in
register pair HL.

Symbol Specifies one of the registers

r A, B, C, D, E, H, or L.

Symbol Specifies a register pair

qq BC,DE,HL,OrAF
ss BC,DE,HL,orSP
dd . BC, DE, HL, or SP
pp BC, DE, IX, or SP
rr BC, DE, IX, or SP

37

SERIES I EDITOR/ASSEMBLER

Symbol
n
nn
d
e

Symbol

s
m
(nn)
b
cc

Specifies a number or symbol in the range
0 to 255 (one byte)
0 to 65535 (two bytes)
-128 to 127 (one byte)
-126 to 129 (one byte)

Specifies any of the following

r, n, (HL), (IX+ct), or (IY+d)
r, (HL) (IX+d), or (IY+d)
Specifies the contents of memory location nn
Specifies an expression in the range (0, 7)
Specifies the state of the Flags for conditional JR, JP, CALL and
RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)
Operation: r ¢ (HL)
This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r.

When you write the assembly language code, the lowercase r will be replaced
by A, B, C, D, E, H orL.

Format:

Mnemonic: LD Operands: r,(HL)

Object Code:

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code
LD A,(HL)
LD B,(HL)
LD C,(HL)

38

Object Code

01111110
01000110
01001110

THE Z-80 INSTRUCTION SET

This instruction uses two machine (M) cycles. The first machine cycle consists
of four timing (T) states and the second machine cycle consists of three T states
for a total of seven T states. In the TRS-80 one T state takes .5636714
microseconds because the clock speed is 1. 774038 MHz, for Model I, 4 MHz
for Model U and 2.02752 MHz for Model III. The execution time (E.T.), in
microseconds, is calculated for the TRS-80. (One microsecond is 10- 6 seconds
or 1/1,000,000 of a second.)

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, Hor L, assembled as follows in the object
code:

Register r
A 111
B = 000
C = 001
D = 010
E 011
H 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If register pair HL contains the number 75A1H, and memory address 75 AlH
contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: IF cc TRUE, PC¢nn
The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program
to jump to address nn.

When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number
from O to 65535 or a label.

39

SERIES I EDITOR/ASSEMBLER

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

J 1 : 1 >< cc >< o : 1 : o 1

Jn:n:n:n:n:n:n:nJ

Jn:n:n:n:n:n:n:nJ

Note: The first n operand in this assembled object code is the low order byte of
a two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object
code, replace bits 3, 4 and 5 of the first byte with the appropriate number from
the table. The second two bytes of the object code are the address being jumped
to. For example:

Source Code

JP NZ, 0FFOOH

JP M, 1002H

Object Code

11000010 C2H
00000000 OOH
11111111 FFH
11111010 FAH
00000010 02H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. Condition
cc is programmed as one of eight status bits which correspond to condition bits
in the Flag Register (register F). These eight status bits are defined in the table
below which also specifies the corresponding cc bit fields in the assembled
object code.

The Relevant Flag column shows the value the flag must have if the jump is to
occur.

40

THE Z-80 INSTRUCTION SET

cc

000
001
010
011
100
101
110
111

Condition

NZ non zero
Z zero
NC no carry
C carry
PO parity odd or no overflow
PE parity even or overflow
P sign positive
M sign negative

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

Relevant
Flag

Z =0
Z = 1
C =0
C = 1
P/V = 0
P/V = 1
S = 0
S = 1

4 MHz E.T.: 2.50

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are 03H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address 1520H the byte 03H. In other words, program
execution jumps to the instruction at 1520H.

Format Example 3

CPIR
Operation: A - (HL), HL ¢ HL + 1, BC¢ BC -1

The shorthand description indicates that three different things are happening:

1. BC is decremented

2. HL is incremented

3. A byte in memory is subtracted from the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

41

SERIES I EDITOR/ASSEMBLER

Object Code:

I 1
:

1
:

1 : 0 : 1
:

1 : 0 : 1
I

ED

I 1 : 0 : 1 : 1 :o:o:o: 1
I

Bl

The assembly language instruction has no operands.

The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to go to zero or if
A= (HL), the instruction is terminated. If BC is not zero and A -:fr- (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
companson.

For BC -:fr- 0 and A -:fr- (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

For BC=0 or A=(HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

The total execution time of this instruction depends on how long it talces to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC = 0 or A = (HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 111 IH, the Accumulator contains F3H, the Byte
Counter contains 0007H, and memory locations have these contents:

(111 IH) 52H
(1112H) OOH
(1113H) F3H

42

THE Z-80 INSTRUCTION SET

then after the execution of

CPIR
the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC* 0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, the Z flag is set.
The CPIR instruction will affect five of the six condition codes.

43

THE Z-80 INSTRUCTION SET

Z-80 Instruction Set
Table of Contents

8 Bit Load Group . 47
16 Bit Load Group . 65
Exchange, Block Transfer
and Search Group . 87
8 Bit Arithmetic and Logical Group 105
General Purpose Arithmetic
and CPU Control Groups ... 135
16 Bit Arithmetic Group .. 141
Rotate and Shift Group ... 151
Bit Set, Reset
and Test Group ... 177
Jump Group ... 189
Call and Return Group ... 201
Input and Output Group .. 211

45

8 BIT LOAD GROUP

8 Bit Load Group

LD r,r' LoaD

Operation: r Qr'

Format:

Mnemonic: LD Operands: r, r'

Object Code:

I O : 1 : r : r : r : r' : r' : r' I

Description:

The contents of any register r' are loaded into any other register r. Note: r, r'
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in
the object code:

Register r, r'

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction

LD H,E

would result in both registers containing 10H.

47

SERIES I EDITOR/ASSEMBLER

LO r,n
Operation: r ¢ n

Format:

Mnemonic: LO

Object Code:

Operands: r, n

io'.o'.r'.r'.r'.1'.1'.oi

ln:n:n:n:n:n:n:nl

Description:

LoaD

The eight-bit integer n is loaded into any register r, where r identifies register A,
B, C, 0, E, Hor L, assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
0 = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example 1:

After the execution of

LO E,A5H

4 MHz E.T.: 1.75

the contents of register E will be A5H.

Example 2:

After the execution of

LO A,0

register A will contain zero.

48

8 BIT LOAD GROUP

LD r,(HL) LoaD

Operation: r ¢ (HL)

Format:

Mnemonic: LD Operands: r, (HL)

Object Code:

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, Hor L, assembled as follows in the object
code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If register pair HL contains the number 75AlH, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)

will result in 58H in register C.

LD r,(IX + d) LoaD

Operation: r ¢(IX+ d)

Format:

Mnemonic: LD Operands: r, (IX+ d)

49

SERIES I EDITOR/ASSEMBLER

Object Code:

!1:1:0:1:1:1:0:11

Jo:1:r:r:r:1:1:0/

1d:d:d:d:d:d:d:d1

Description:

DD

The operand (IX+ d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C, D, E, Hor L, assembled as follows in the object code:

Register r

A = 111
B = 000
C 001
D = 010
E 011
H 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

LD B,(IX + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in
memory this program will load the first four bytes of the table into registers A,
B, C and D.

LD
LD
LD
LD
LD

50

IX, TABL
A, (IX+0)
B, (IX+ 1)
C, (IX+2)
D, (IX+3)

; IX points to the table
; Load first byte
; Load second byte
; Load third byte
; Load fourth byte

8 BIT LOAD GROUP

LD r,(IY + d)
Operation: r ¢ (IY + d)

Format:

Mnemonic: LO Operands: r, (IY + d)

Object Code:

11:1:1:1:1:1:0:11

Jo:1:r:r:r:1:1:01

1d:d:d:d:d:d:d:d1

Description:

FD

LoaD

The operand (IY + d) (the contents of the Index Register IY summed with a
two's complement displacement integer d) is loaded into register r, where r
identifies register A, B, C, D, E, H, or L, assembled as follows in the object
code:

Register r

A 111
B = 000
C 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the Index Register IY contains the number 25AFH, the instruction

LO B,(IY + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

51

SERIES I EDITOR/ASSEMBLER

LO (HL),r LoaD

Operation: (HL) ¢ r

Format:

Mnemonic: LD Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, D, E,
H or L, assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B

memory address 2146H will also contain 29H.

LO (IX +d),r LoaD

Operation: (IX+ d) ¢ r

Format:

Mnemonic: LD Operands: (IX+ d), r

52

8 BIT LOAD GROUP

Object Code:

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

io:1:1:1:0:r:r:rl

1d:d:d:d:d:d:d:d1

Description:

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, a two's complement displacement
integer. The symbol r identifies register A, B, C, D, E, Hor L, assembled as
follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte lCH, and the Index Register IX contains
3100H, then the instruction

LO (IX+ 6H), C

will perform the sum 3100H + 6H and will load lCH into memory location
3106H.

LD (IY +d),r LoaD

Operation: (IV+ d) ¢ r

Format:

Mnemonic: LD Operands: (IY + d), r

53

SERIES I EDITOR/ASSEMBLER

Object Code:

11:1:1:1:1:1:0:11

lo:1:1:1:0:r:r:rJ

1d:d:d:d:d:d:d:d1

Description:

FD

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two's complement
displacement integer. The symbol r is specified according to the following table.

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte 48H, and the Index Register IY contains
2A11H, then the instruction

LD (IY+4H),C

will perform the sum 2Al 1H + 4H, and will load 48H into memory location
2A15.

LD (HL),n LoaD

Operation: (HL) ¢ n

Format:

Mnemonic: LD Operands: (HL), n

54

8 BIT LOAD GROUP

Object Code:

Jo:0:1:1:0:1:1:0/

Jn:n:n:n:n:n:n:nl

Description:

36

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL),28H

will result in the memory location 4444H containing the byte 28H.

LD (IX +d),n
Operation: (IX + d) ¢ n

Format:

Mnemonic: LD Operands: (IX+ d), n

Object Code:

/1:1:0:1:1:1:0:11

/0:0:1:1:0:1:1:01

1d:d:d:d:d:d:d:d1

Jn:n:n:n:n:n:n'.n/

DD

36

Load

55

SERIES I EDITOR/ASSEMBLER

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two's complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction

LD (IX+ 5H),5AH

would result in the byte 5AH in the memory address 219FH.
(219FH = 219AH + 5H.)

LD (IY+d),n
Operation: (IV+ d) ¢ n

Format:

Mnemonic: LD Operands: (IY + d), n

Object Code:

11:1:1:1:1:1:0:11

10:0:1:1:0:1:1:01

1d:d:d:d:d:d:d:d1

ln:n:n:n:n:n:n:nl

Description:

FD

36

LoaD

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two's complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

56

8 BIT LOAD GROUP

Example:

If the Index Register IY contains the number A940H, the instruction

LD (IY+ 10H),97H

would result in byte 97H in memory location A950H.

LD A,(BC)
Operation: A¢ (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

0A

Description:

LoaD

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,(BC)

will result in byte 12H in register A.

LD A,(DE) LoaD

Operation: A¢ (DE)

Format:

Mnemonic: LD Operands: A, (DE)

57

SERIES I EDITOR/ASSEMBLER

Object Code:

lA

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)

will result in byte 22H in register A.

LD A,(nn)
Operation: A¢ (nn)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:

Jo:0:1:1:1:0:1:oJ

Jn:n:n:n:n:n:n:nJ

Jn:n:n:n:n:n:n:nJ

Description:

LoaD

3A

The contents of the memory location specified by the operands nn are loaded
into the Accumulator. The first n operand is the low order byte of a two-byte
memory address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

58

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction

LD A,(8832H)

byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) ¢ A

Format:

Mnemonic: LD Operands: (BC), A

Object Code:

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7 AH and the BC register pair contains 1212H the
instruction

LD (BC),A

will result in 7AH being in memory location 1212H.

LD (DE),A LoaD

Operation: (DE) ¢A

Format:

Mnemonic: LD Operands: (DE), A

59

SERIES I EDITOR/ASSEMBLER

Object Code:

12

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
A0H, the instruction

LO (DE),A

will result in A0H being in memory location 1128H.

LO (nn),A
Operation: (nn) ¢A

Format:

Mnemonic: LO Operands: (nn), A

Object Code:

1 o: o: 1 : 1 : o: o: 1 : o 1 32

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

LoaD

The contents of the Accumulator are loaded into the memory address specified
by the operands nn. The first n operand in the assembled object code above is
the low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

60

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A

D7H will be in memory location 3141H.

LD A,I
Operation: A¢ I

Format:

Mnemonic: LD

Object Code:

Operands: A, I

J1:1:1:0;1:1:o:1I

Jo:1:0:1:0:1:1:1I

Description:

ED

57

LoaD

The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.

Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of

LO A,I

the accumulator will also contain 4AH.

61

SERIES I EDITOR/ASSEMBLER

LDA,R
Operation: A¢ R

Format:

Mnemonic: LD Operands: A, R

Object Code:

11:1:1:0:1:1:0:11

Jo'.1'.o'.1'.1:1:1:1J

Description:

ED

5F

LoaD

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of

LD A,R

the Accumulator will also contain 4AH.

LD l,A LoaD

Operation: I ¢ A

Format:

Mnemonic: LD Operands: I, A

62

8 BIT LOAD GROUP

J1'.1'.1'.o'.1:1:o'.1I

Jo:1:0:0:0:1:1:11

Description:

ED

47

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, I.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction

LD I,A

the Interrupt Vector Register will also contain 81H.

LD R,A
Operation: R ¢ A

Format:

Mnemonic: LD Operands: R, A

Object Code:

J1:1:1:o:1:1:o:1I

Jo:1:0:0:1:1:1:11

Description:

ED

4F

LoaD

The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

63

SERIES I EDITOR/ ASSEMBLER

Example:

If the Accumulator contains the number B4H, after the instruction

LO R,A

the Memory Refresh Register will also contain B4H.

64

16 BIT LOAD GROUP

16 Bit Load Group
LD dd,nn
Operation: dd ¢ nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

I O : 0 : d : d : 0 : 0 : 0 : 1 I

/n:n:n'.n'.n'.n'.n'.n/

I n : n : n : n : n : n : n : n I

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

After the execution of

LD HL,5000H

4 MHz E.T.: 2.50

the contents of the HL register pair will be 5000H.

LoaD

65

SERIES I EDITOR/ ASSEMBLER

After the execution of

LD BC,2501H

the BC register will contain 2501H.

LD IX,nn
Operation: IX¢ nn

Format:

Mnemonic: LD Operands: IX, nn

Object Code:

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I o : o : 1 : o : o : o : o : 1 1 21

ln:n:n:n:n:n:n:nl

In: n :-n: n: n: n : n: n I

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3)

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

4 MHz E.T.: 3.50

the Index Register will contain integer 45A2H.

66

LoaD

16 BIT LOAD GROUP

LD IY,nn
Operation: IV¢ nn

Format:

Mnemonic: LD

Object Code:

Operands: IY, nn

11:1:1:1:1:1:0:11 FD

1 o: o: 1 : o: o: o : o : 1 1 21

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

Integer nn is loaded into the Index Register IY. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY,7733H

the Index Register IYwill contain the integer 7733H.

LD HL,(nn)
Operation: H¢(nn+1), L¢(nn)

Format:

Mnemonic: LD Operands: HL, (nn)

LoaD

LoaD

67

SERIES I EDITOR/ ASSEMBLER

Object Code:

I O : 0 : 1 : 0 : 1 : 0 : 1 : 0 I 2A

jn:n:n:n:n:n:n:nl

Jn:n:n:n:n:n:n:nl

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn + 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains AlH, after the
instruction
LO HL,(4545H)
the HL register pair will contain A137H.

LD dd,(nn) LoaD

Operation: ddH¢(nn + 1), ddL ¢(nn)

Format:

Mnemonic: LD Operands: dd, (nn)

Object Code:

I 1
:

1
:

1 : 0 : 1
:

1 : 0 : 1 I ED

IO : 1 : d : d : 1 : 0 : 1 : 1 I

In : n : n
:

n
:

n : n : n
:

n I

jn'.n'.n'.n'.n'.n'.n'.nl

68

16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn + 1) are loaded
into the high order portion of dd. Register pair dd defines BC, DE, HL, or SP
register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)

the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)

the SP will contain 0201H.

LD IX,(nn) LoaD

Operation: IXH ¢ {nn + 1), IXL¢ {nn)

Format:

Mnemonic: LD Operands: IX, (nn)

69

SERIES I EDITOR/ ASSEMBLER

Object Code:

J1;1;0;1;1;1;0;1J

jo;o: 1 ;o; 1 ;a; 1 ;oJ

ln:n:n:n:n:n:n:nJ

ln:n:n:n:n:n:n:nJ

Description:

DD

2A

The contents of the address nn are loaded into the low order portion of Index
Register IX, and the contents of the next highest memory address (nn + 1) are
loaded into· the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)

the Index Register IX will contain DA92H.

LD IY,(nn) LoaD

Operation: IYH¢(nn + 1), IYL ¢(nn)

Format:

Mnemonic: LD Operands: IY, (nn)

70

16 BIT LOAD GROUP

Object Code:

lo:o: 1 :o: 1 :o: 1 :ol

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

FD

2A

The contents of address nn are loaded into the low order portion of Index
Register IY, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IY. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction

LD IY,(6666H)

the Index Register IY will contain DA92H.

LD (nn),HL LoaD

Operation: (nn + 1) ¢ H, (nn) ¢ L

Format:

Mnemonic: LD Operands: (nn), HL

71

SERIES I EDITOR/ ASSEMBLER

Object Code:

1 o : o : 1 : o : o : o : 1 : o 1

Jn:n:n:n:n:n:n:nJ

Jn:n:n:n:n:n:n:nJ

Description:

22

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn + 1). The first
n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3;3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction

LD (B229H),HL

address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE+ 1 will contain 50H.

Note: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (nn + 1) ¢ddH, (nn) ¢ddL

Format:

Mnemonic: LD Operands: (nn), dd

72

16 BIT LOAD GROUP

Object Code:

11:1:1:0:1:1:0:11

Jo:1:d:d:0:0:1:11

Jn:n:n:n:n:n:n:nJ

Jn:n:n:n:n:n:n:nJ

Description:

ED

The low order byte of register pair dd is loaded into memory address (nn); the
upper order byte is loaded into memory address (nn + 1). Register pair dd
defines either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte of a two
byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 5.00

If register pair BC contains the number 4644H, the instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in memory
location 1001H.

LD (nn),IX
Operation: (nn + 1) ¢ IXH, (nn) ¢ IXL

Format:

Mnemonic: LD Operands: (nn), IX

LoaD

73

SERIES I EDITOR/ ASSEMBLER

Object Code:

DD

22

Description:

The low order byte in Index Register IX is loaded into memory address nn; the
upper order byte is loaded into the next highest address (nn + 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction

LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will
contain 5AH.

LD (nn),IY LoaD

Operation: (nn + 1) ¢ IYH, (nn) ¢ IYL

Format:

Mnemonic: LD Operands: (nn), IY

74

16 BIT LOAD GROUP

Object Code:

11:1:1:1:1:1:0:11

lo:o: 1 :a:o:o: 1 :al

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

FD

22

The low order byte in Index Register IY is loaded into memory address nn; the
upper order byte is loaded into memory location (nn + 1). The first n operand in
the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H,IY

memory location 8838H will contain number 74H and memory location 8839H
will contain 41H.

LD SP,HL LoaD

Operation: SP¢ HL

Format:

Mnemonic: LD Operands: SP, HL

Object Code:

F9

Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

75

SERIES I EDITOR/ ASSEMBLER

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction

LO SP,HL

the Stack Pointer will also contain 442EH.

LD SP,IX
Operation: SP¢ IX

Format:

Mnemonic: LO Operands: SP, IX

Object Code:

11:1:0:1:1:1:0:11

11:1:1:1:1:0:0:11

Description:

DD

F9

LoaD

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LO SP,IX

the contents of the Stack Pointer will also be 98DAH.

76

16 BIT LOAD GROUP

LO SP,IY LoaD

Operation: SP¢ IY

Format:

Mnemonic: LD Operands: SP, IY

Object Code:

11:1:1:1:1:1:0:11 FD

11:1:1:1:1:0:0:11 F9

Description:

The two byte contents of Index Register IY are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the instruction

LD SP,IY

the Stack Pointer will also contain A227H.

PUSH qq
Operation: (SP-2) ¢qql, (SP-1) ¢qqH

Format:

Mnemonic: PUSH Operands: qq

Object Code:

77

SERIES I EDITOR/ ASSEMBLER

Description:

The contents of the register pair qq are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This instruction first decrements the
SP and loads the high order byte of register pair qq into the memory address
now specified by the SP, then decrements the SP again and loads the low order
byte of qq into the memory location corresponding to this new address in the
SP. The operand qq means register pair BC, DE, HL, or AF, assembled as
follows in the object code:

Pair qq
BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. In other words the number from
register pair AF is now on the top of the stack, and the stack pointer is pointing
to it.

Before:

Register AF
2233

Stack Pointer
1007

After: PUSH

Register AF
2233

Stack Pointer
1005

78

Address
1007
1008

AF

Address
1005
1006
1007
1008

Stack
FF
35

Stack
33
22
FF
35

16 BIT LOAD GROUP

PUSH IX
Operation: (SP - 2) ¢ IXL, (SP - 1) ¢ IXH

Format:

Mnemonic: PUSH Operands: IX

Object Code:

11:1:0:1:1:1:0:11

11:1:1:0:0:1:0:11

Description:

DD

E5

The contents of the Index Register IX are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current "top" of the Stack. This instruction first
decrements the SP and loads the high order byte of IX into the memory address
now specified by the SP, then decrements the SP again and loads the low order
byte into the memory location corresponding to this new address in the SP.

M cycles: 3 T states: 15(4,5,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.75

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from the IX
register pair is now on the top of the stack.

Before:

Register IX

2233

Stack Pointer

1007

Address

1007
1008

Stack

FF
35

79

SERIES I EDITOR/ ASSEMBLER

After: PUSH

Register IX

2233

Stack Pointer

1005

IX

Address

1005
1006
1007
1008

PUSH IY

Stack

33
22
FF
35

Operation: (SP-2) ¢ IYL, (SP-1) ¢ IYH

Format:

Mnemonic: PUSH Operands: IY

Object Code:

!1:1:1:1:1:1:0:11

11:1:1:0:0:1:0:11

Description:

FD

E5

The contents of the Index Register IY are pushed into the external memory
LIFO (last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the
16-bit address of the current ''top'' of the Stack. This instruction first
decrements the SP and loads the high order byte of IY into the memory address
now specified by the SP; then decrements the SP again and loads the low order
byte into the memory location corresponding to this new address in the SP.

M cycles: 4 T states: 15(4,5,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.75

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IY

80

16 BIT LOAD GROUP

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from register pair
IY is now on the top of the stack.

Before:

Register IY
2233

Stack Pointer
1007

After: PUSH

Register IY
2233

Stack Pointer
1005

POPqq

Address
1007
1008

IY

Address
1005
1006
1007
1008

Stack
FF
35

Stack
33
22
FF
35

Operation: qqH ¢(SP+ 1), qqL ¢ (SP)

Format:

Mnemonic: POP Operands: qq

Object Code:

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit
address of the current ''top'' of the Stack. This instruction first loads into the
low order portion of qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of qq and the
SP is now incremented again. The operand qq defines register pair BC, DE, HL,
or AF, assembled as follows in the object code:

81

SERIES I EDITOR/ ASSEMBLER

Pair r
BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP HL
will result in register pair HL containing 3355H, and the Stack Pointer
containing 1002H. In other words register pair HL contains the number which
was on the top of the stack, and the stack pointer is pointing to the current top of
the stack.

Before:

Register HL
2233

Stack Pointer
1000

After: POP

Register HL

3355

Stack Pointer

1002

POPIX

Address
1000
1001
1002
1003

HL

Address

1002
1003

Stack
55
33
A4
62

Stack
A4
62

Operation: IXH ¢(SP+ 1), IXL¢ (SP)

Format:

Mnemonic: POP Operands: IX

82

16 BIT LOAD GROUP

Object Code:

DD

El

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IX. The Stack Pointer (SP) register pair holds the
16-bit address of the current "top" of the Stack. This instruction first loads into
the low order portion of IX the byte at the memory location corresponding to the .
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP
is now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer
containing 1002H. Register pair IX contains the number which used to be on the
top of the stack.

Before:

Register IX

24F9

Stack Pointer

1000

Address

1000
1001
1002
1003

Stack

55
33
A4
62

83

SERIES I EDITOR/ ASSEMBLER

After: POP

Register IX
3355

Stack Pointer
1002

POPIY

IX

Address
1002
1003

Stack
A4
62

Operation: IYH¢(SP+ 1),IYL¢(SP)

Format:

Mnemonic: POP Operands: IY

Object Code:

11:1:1:1:1:1:0:11

11:1:1:0:0:0:0:11

Description:

FD

El

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IY. The Stack Pointer (SP) register pair holds the
16-bit address of the current "top" of the Stack. This instruction first loads into
the low order portion of IY the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IY. The SP
is now incremented again.

M cycles: 4 T states: 14(4,4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.50

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer
containing 1002H. Register pair IY contains the number which used to be on the
top of the stack.

84

16 BIT LOAD GROUP

Before:

Register IY Address Stack
24F9 1000 55

1001 33
1002 A4
1003 62

Stack Pointer
1000

After: POP IY

Register IY Address Stack
3355 1002 A4

1003 62

Stack Pointer
1002

85

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Exchange, Block Transfer
and Search Group

EX DE,HL
Operation: DE¢• HL

Format:

Mnemonic: EX Operands: DE, HL

Object Code:

EB

Description:

The two-byte contents of register pairs DE and HL are exchanged.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

EXchange-

If the content of register pair DE is the number 2822H, and the content of the
register pair HL is number 499AH, after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the content of register pair
HL will be 2822H.

EX AF,AF' EXchange

Operation: AF¢• AF'

Format:

Mnemonic: EX Operands: AF, AF'

87

SERIES I EDITOR/ASSEMBLER

Object Code:

1 o : o : o : o : 1 : o : o : o 1 08

Description:

The two-byte contents of the register pairs AF and AF' are exchanged.
(Note: register pair AF' consists of registers A' and F.')

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register
pair AF' is number 5944H, after the instruction

EX AF,AF'

the contents of AF will be 5944H, and the contents of AF will be 9900H.

EXX EXchange

Operation: (BC)¢[) (BC'), (DE)¢[) (DE'), (HL) ¢[) (HL:)

Format:

Mnemonic: EXX Operands:

Object Code:

D9

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the
two-byte value in BC; DE; and HL; respectively.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example 1:

If the contents of register pairs BC, DE, and HL are the numbers 445AH,
3DA2H, and 8859H, respectively, and the contents of register pairs BC; DE;
and HL' are 0988H, 9300H, ~nd 00E7H, respectively, after the instruction

88

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP -

EXX

the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H;
HL: 00E7H; BC': 445AH; DE': 3DA2H; and HL': 8859H.

Example 2:

If the contents of the registers are as shown:

BC 1111H
DE 2222H
HL 3333H
BC' 4444H
DE' 5555H
HL' 6666H

Then after an EXX instruction the registers will contain:

BC 4444H
DE 5555H
HL 6666H
BC' 1111H
DE' 2222H
HL' 3333H

EX (SP), HL EXchange

Operation: H ¢0 (SP+ 1), L ¢0 (SP)

Format:

Mnemonic: EX Operands: (SP),HL

Object Code:

E3

Description:

The low order byte contained in register pair HL is exchanged with the contents
of the memory address specified by the contents of register pair SP (Stack
Pointer), and the high order byte of HL is exchanged with the next highest
memory address (SP+ 1).

M cycles: 5 T states: 19(4,3,4,3,5) 4 MHz E.T.: 4.75

Condition Bits Affected: None

89

SERIES I EDITOR/ASSEMBLER

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the
memory location 8856H contains the byte 1 IH, and the memory location 8857H
contains the byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 2211H, memory location.
8856H containing the byte 12H, the memory location 8857H containing the byte
70H and the Stack Pointer containing 8856H.

Before:

Register HL

7012

Stack Pointer

8856

After:

Register HL

2211

Stack Pointer

8856

Address

8856
8857
8858

Address

8856
8857
8858

EX (SP),IX

Stack

11
22

Stack

12
70

Operation: IXH ¢0 (SP+ 1), IXL ¢0 (SP)

Format:

Mnemonic: EX Operands: (SP), IX

Object Code:

J1:1;0:1:1:1:o:1!

J1:1:1:o:o:o:1:1!

90

DD

E3

EXchange

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Description:

The low order byte in Index Register IX is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer),
and the high order byte of IX is exchanged with the next highest memory
address (SP+ 1).

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0100H,
the memory location 0100H contains the byte 90H, and memory location 0101H
contains byte 48H, then the instruction

EX (SP),IX

will result in the IX register pair containing number 4890H, memory location
0100H containing 88H, memory location 0101H containing 39H and the Stack
Pointer containing 0100H.

Before:

Register IX

3988

Stack Pointer

0100

After:

Register IX

4890

Stack Pointer

0100

Address

0100
0101

Address

0100
0101

Stack

90
48

Stack

88
39

EX (SP),IY
Operation: IYH ¢1; (SP+ 1), IYL ¢1; (SP)

Format:

Mnemonic: EX Operands: (SP), IY

EXchange

91

SERIES I EDITOR/ASSEMBLER

Object Code:

I 1 : 1 : 1 : 1
:

1 : 1 : 0 : 1 I FD

I 1 : 1 : 1 :o:o:o: 1
:

1 I E3

Description:

The low order byte in Index Register IY is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer),
and the high order byte of IY is exchanged with the next highest memory
address (SP+ 1).

M cycles: 6 T states: 23(4,4,3,4,3,5) 4 MHz E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register pair contains 0100H,
the memory location 0100H contains the byte 90H, and memory location
0101H contains byte 48H, then the instruction

EX (SP),IY

will result in the IY register pair containing number 4890H, memory location
0100H containing 88H, memory location 0101H containing 39H, and the Stack
Pointer containing 0100H.

Before:

Register IY

3988

Stack Pointer

0100

After:

Register IY

4890

Stack Pointer

0100

92

Address

0100
0101

Address

0100
0101

Stack

90
48

Stack

88
39

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LDI LoaD & Increment

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL ¢ HL + 1, BC¢ BC -1

Format:

Mnemonic: LDI Operands:

Object Code:

11:1:1:0:1:1:0:11

1 1 : o : 1 : o : o : o : o : o 1

Description:

ED

AO

A byte of data is transferred from the memory location addressed by the
contents of the HL register pair to the memory location addressed by the
contents of the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC - 1 -=I=- 0; reset otherwise
N: Reset
C: Not affected

Example 1:

If the HL register pair contains 111 lH, memory location 111 lH contains the byte
88H, the DE regi_ster pair contains 2222H, the memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the instruction

LDI
' will result in the following contents in register pairs and memory addresses:

HL 1112H
(1111H) 88H
DE 2223H
(2222H) 88H
BC 6H

93

SERIES I EDITOR/ASSEMBLER

and the condition Bits will be:

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL
(7C00)
DE
(3C00)
BC

7C00H
FFH
3COOH
00H
IH

Then after an LDI instruction the registers and memory will contain the
following:

HL
(7COO)
DE
(3C00)
BC 0H

7C01H
FFH
3C01H
FFH

and the condition bits will be:

S Z H P/V N C

Example 3:

The following program will move 80 consecutive bytes from BUFl to BUF2:

LD HL, BUFI
LD DE, BUF2
LD BC, 80
LOOP LDI
JP NZ, LOOP

LDIR LoaD Increment & Repeat

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL ¢ HL + 1, BC¢ BC - 1

Format:

Mnemonic: LDIR Operands:

94

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

11:1:1:0:1:1:0:11

I 1 :o: 1: 1 :0:0:0:01

Description:

ED

B0

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If decrementing causes
the BC to go to zero, the instruction is terminated. If BC is not zero the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruction will loop through
64K bytes. Also, interrupts will be recognized after each data transfer.

For BC=/=0:

M cycles: 5

For BC=0:

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 111 IH, the DE register pair contains 2222H, the
BC register pair contains 0003H, and memory locations have these contents:

(1111H) 88H
(1112H) : 36H
(1113H) : A5H

then after the execution of

LDIR

(2222H)
(2223H)
(2224H)

66H
59H
C5H

95

SERIES I EDITOR/ASSEMBLER

the contents of register pairs and memory locations will be:

HL 1114H
DE 2225H
BC 0000H

(111 IH) 88H (2222H) 88H
(1112H) 36H (2223H) 36H
(1113H) ASH (2224H) ASH

and the H, P /V, and N flags are all zero.

LDD LoaD Decrement

Operation: (DE)¢ (HL), DE¢ DE - 1, HL ¢ HL - 1, BC¢ BC - 1

Format:

Mnemonic: LOO Operands:

Object Code:

J1:1:1:o:1:1:o:1I ED

I 1 : 0 : 1 : 0 : 1 : 0 : 0 : 0 I A8

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these register
pairs, including the BC (Byte Counter) register pair, are decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC - 1 -=I= 0; reset otherwise
N: Reset
C: Not affected

96

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Example 1:

If the HL register pair contains 111 IH, memory location 111 IH contains the byte
88H, the DE register pair contains 2222H, memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:

HL 1110H
(111 IH) 88H
DE 2221H
(2222H) 88H
BC 6H
and the condition bits will be:

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL 7CFFH
(7CFF) 3CH
DE 3CFFH
(3CFF) 00H
BC IH

Then after a LDD instruction the registers and memory will contain the
following:

HL
(7CFF)
DE
(3CFF)
BC

7CFEH
3CH
3CFEH
3CH
0H

and the condition bits will be:

I 0 I 0 I 0 I
S Z H P/V N C

LDDR LoaD Decrement & Repeat

Operation: (DE)¢ (HL), DE¢ DE -1, HL¢ HL-1, BC¢ BC-1

Format:

Mnemonic: LDDR Operands:

97

SERIES I EDITOR/ASSEMBLER

Object Code:

I : : : o : : 1 : o : 1 1
ED

1 :0:1:1:1:0:0:01 BS

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these registers
as well as the BC (Byte Counter) are decremented. If decrementing causes the
BC to go to zero, the instruction is terminated. If BC is not zero, the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero prior to instruction execution, the instruction will loop through
64K bytes. Also, interrupts will be recognized after each data transfer.

For BC=t-0:

M cycles: 5

For BC=0:

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1114H, the DE register pair contains 2225H, the
BC register pair contains 0003H, and memory locations have these contents:

(1114H) ASH
(1113H) : 36H
(1112H) : 88H

then after the execution of

LDDR

98

(2225H)
(2224H)
(2223H)

C5H
59H
66H

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

the contents of register pairs and memory locations will be:

HL 1111H
DE 2222H
BC 0000H
(1114H) A5H (2225H) A5H
(1113H) 36H (2224H) 36H
(1112H) 88H (2223H) 88H

and the H, P/V, and N flags are all zero.

CPI ComPare & Increment

Operation: A - (HL), HL¢ HL + 1, BC¢ BC -1

Format:

Mnemonic: CPI Operands:

Object Code:

11:1:1:0:1:1:0:11

J 1 :o: 1 :o:o:o:o: 1 I

Description:

ED

Al

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise
N: Set
C: Not affected

99

SERIES I EDITOR/ASSEMBLER

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH,
the Accumulator contains 3BH, and the Byte Counter contains 0001H, then after
the execution of

CPI

the Byte Counter will contain 0000H, the HL register pair will contain 1112H,
the Z flag in the F register will be set, and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
111 lH.

If the contents of memory and registers are as shown

HL
(8A00H)
A
BC

8A00H
6DH
75H
5H

Then during the execution of a CPI instruction the Arithmetic and Logic Unit
will do the following subtraction:

Borrow needed here

75H = 0111 0101
- 6DH = 0110 1101

8H = 0000 1000

After CPI is executed registers and memory will contain the following:

HL
(8A00H)
A
BC

8A01H
6DH
75H
4H

and the condition bits would be:

result positive
match not found
borrow from bit 4

Example 3:

1010111111111

S Z H P/V N C
o o o o o o not affected

always set
BC not zero

The following program is used to verify that the contents of two 80-byte buffers
are identical. Each time a mismatch is found the program calls a subroutine
called ERROR.

100

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

STRT LD
LD
LD

LOOP LD

END

CPI
CALL
INC
JR

CPIR

HL,BUFl
DE, BUF2
BC, 80
A, (DE)

NZ, ERROR
DE
PO,LOOP

ComPare Increment & Repeat

Operation: A - (HL), HL ¢ HL + 1, BC¢ BC - 1

Format:

Mnemonic: CPIR Operands:

Object Code:

J 1 : ,1 : l : 0 : l : 1 : 0 : 1 I

J1:o:1:1:o:o:o:1J

Description:

ED

Bl

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to go to zero or if
A= (HL), the instruction is terminated. If BC is not zero and A* (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC* 0 and A* (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25
For BC* 0 or A= (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

101

SERIES I EDITOR/ASSEMBLER

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 111 IH, the Accumulator (Register A) contains
F3H, the Byte Counter contains 0007H, and memory locations have these
contents:

(llllH) 52H
(1112H) 00H
(1113H) F3H

then after the execution of

CPIR

the contents of register pair HL wiU be 1114H, and the contents of the Byte
Counter will be 0004H: Since BC =I= 0, the P/V flag is still set. This means that it
did not search through the whole block before the instruction stopped. Since a
match was found, the Z flag is set.

The following program uses the CPIR instruction to count the number of nulls
(00H) found in an 80-byte buffer. The count is kept in register E.

STRT

LOOP

FOO
END

CPD

LD
LD
LD
LD
CPIR
JR
INC
JP

BC, 80
HL, BUFF
A,O
E,O

NZ, FOO
E
PE, LOOP

ComPare & Decrement

Operation: A - (HL), HL ¢ HL-1, BC¢ BC - 1

Format:

Mnemonic: CPD Operands:

102

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

1 :1:1:0:1:1:0:11

11:0:1:0:1:0:0:1/

Description:

ED

A9

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the Z
condition bit is set. The HL and the Byte Counter (register pair BC) are
decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 111 lH, memory location 111 lH contains 3BH,
the Accumulator contains 3BH, and the Byte Counter contains 0001H, then after
the execution of

CPD

the Byte Counter will contain 0000H, the HL register pair will contain 1110H,
the Z flag in the F register will be set and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
1111H.

Since the CPD instruction decrements HL, it is used to search through memory
from high to low addresses. Otherwise it is similar to the CPI instruction.

CPDR ComPare Decrement & Repeat

Operation: A - (HL), HL ¢ HL -1, BC¢ BC - 1

Format:

Mnemonic: CPDR Operands:

103

SERIES I EDITOR/ASSEMBLER

Object Code:

!1:1:1:0:1:1:0:11

!1:0:1:1:1:0:0:11

Description:

ED

B9

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to zero or if A= (HL), the
instruction is terminated. If BC is not zero and A =fr. (HL), the program counter is
decremented by 2 and the instruction is repeated. Note that if BC is set to zero
prior to instruction execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.
For BC=fr.0 and A=fr.(HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25
For BC = 0 or A = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL), reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte
Counter contains 0003H, and memory locations have these contents:

(1118H) 52H
(1117H) : 00H
(1116H) : F3H

then after the execution of
CPDR

the contents of register pair HL will be 1115H, the contents of the Byte Counter
will be (l)(l)(l)(l)H, the P/V flag in the F register will be reset, and the Z flag in the
F register will be set.

104

8 BIT ARITHMETIC AND LOGICAL GROUP

8 Bit Arithmetic and Logical Group
ADD A,r
Operation: A¢ A + r
Format:

Mnemonic: ADD Operands: A, r

Object Code:

I 1 : 0 : 0 : 0 : 0 : r : r : r I

Description:

The contents of register r are added to the contents of the Accumulator, and the
result is stored in the Accumulator. The symbol r identifies the registers A, B,
C, D, E, Hor L assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents of register Care
l lH, after the execution of

ADD A,C

105

SERIES I EDITOR/ASSEMBLER

the contents of the Accumulator will be 55H. See Appendix K for more details
of condition bits affected.

ADDA,n
Operation: A¢ A + n

Format:

Mnemonic: ADD Operands: A, n

Object Code:

Description:

The integer n is added to the contents of the Accumulator and the results are
stored in the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the exec.ution of

ADD A,33H

the contents of the Accumulator will be 56H.

106

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A,(HL)
Operation: A ¢A+ (HL)

Format:

Mnemonic: ADD Operands: A, (HL)

Object Code:

Description:

The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are A0H, and the content of the register
pair HL is 2323H, and memory location 2323H contains byte 08H, after the
execution of

ADD A,(HL)

the Accumulator will contain A8H.

ADD A,(IX+d)
Operation: A¢ A+ (IX+ d)

Format:

Mnemonic: ADD Operands: A, (IX+ d)

107

SERIES I EDITOR/ASSEMBLER

Object Code:

J1'.1'.o'.1'.1'.1'.o'.1J

!1:0:0:0:0:1:1:01

1d:d:d:d:d:d:d:d1

Description:

DD

86

The contents of the Index Register (register pair IX) is added to a two's
complement displacement d to point to an address in memory. The contents of
this address is then added to the contents of the Accumulator and the result is
stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 1 lH, the Index Register IX contains 1000H, and
if the content of memory location 1005H is 22H, after the execution of

ADD A,(IX+5H)

the contents of the Accumulator will be 33H.

ADD A,(IY+d)
Operation: A ¢A+ (IY + d)

Format:

Mnemonic: ADD Operands: A, (IY + d)

108

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

11:1:1:1:1:1:0:11

]1:0:0:0:0:1:1:01

1d:d:d:d:d:d:d:d1

Description:

FD

86

The contents of the Index Register (register pair IY) is added to the
displacement d to point to an address in memory. The contents of this address
is then added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 1 lH, the Index Register pair IY contains 1000H,
and if the content of memory location 1005H is 22H, after the execution of

ADD A,(IY + 5H)

the contents of the Accumulator will be 33H.

ADCA,S
Operation: A¢ A+ S + CY

Formaf:

Mnemonic: ADC Operands: A, s

ADd with Carry

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

109

SERIES I EDITOR/ASSEMBLER

Object Code:

ADC A, r I 1 : 0 : 0 : 0 : 1 : r : r : r I

ADC A, n J 1 : 1 : 0 : 0 : 1 : 1 : 1 : 0 I CE

Jn:n:n:~:n:n:n:nl

ADC A, (HL) J 1 : 0 : 0 : 0 : 1 : 1 : 1 : 0 I 8E

ADC A, (IX+ d) J 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 0 : 0 : 0 : 1 : 1 : 1 : 0 I 8E

1d:d:d:d:d:d:d:d1

ADC A, (IY + d) J 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

I 1 : 0 : 0 : 0 : 1 : 1 : 1 : 0 I 8E

1d:d:d:d:d:d:d:d1

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag (' 'C'' in the F register) is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

110

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

ADC A, r 1 4 1.00
ADCA, n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A, (IX+ d) 5 19(4,4,3,5,3) 4.75
ADC A, (IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

Example 2:

If the Carry Flag is set, the Accumulator contains 30H, and register C contains 0
5H, then after the execution of

ADC A, C

the Accumulator will contain 36H.

SUBs SUBtract

Operation: A¢ A - S

Format:

Mnemonic: SUB Operands: s

The s operand is any of r, n, (HL), (IX+d) or (IY+d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

111

SERIES I EDITOR/ASSEMBLER

Object Code:

SUBr

SUBn

SUB (HL)

SUB (IX+d)

SUB (IY+d)

11:0:0:1:0:r:r:rl

J1:1:o:1:o:1:1:ol

ln:n:n:n:n:n:n:nl

I 1 : o : o : 1 : o : 1 : 1 :-o 1

11:1:0:1:1:1:0:11

I 1 :o:o: 1 :o: 1: 1 :ol

1d:d:d:d:d:d:d:d1

11:1:1:1:1:1:0:11

11:0:0:1:0:1:1:01

1d:d:d:d:d:d:d:d1

D6

96

DD

96

FD

96

r identifies registers A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand is subtracted from the contents of the Accumulator, and the result
is stored in the Accumulator.

112

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

SUB r 1 4 1.(1)(1)
SUB n 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX+d) 5 19(4,4,3,5,3) 4.75
SUB (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 29H and register D contains 1 lH, after the
execution of

SUB D

the Accumulator will contain 18H.

SBCA,s SuBtract with borrow (Carry)

Operation: A¢ A- s - CY

Format:

Mnemonic: SBC Operands: A, s

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

SBC A, r I 1 : 0 : 0 : 1
:

1 : r : r : r I

SBC A, n I 1 : 1 : 0 : 1 : 1
:

1
:

1 : 0 I DE

Jn:n:n:n:n:n:n:nl

113

SERIES I EDITOR/ASSEMBLER

SBC A, (HL) I 1 : 0 : 0 : 1
:

1 : 1 : 1 : 0 I 9E

SBC A, (IX+<l) l 1
:

1 : 0 : 1 : 1
:

1 : 0 : 1 I DD

I 1 : 0 : 0 : 1 : 1 : 1
:

1 : 0 I 9E

1d:d:d:d:d:d:d:d1

SBC A,(IY + d) I 1 : 1 : 1 : 1
:

1 : 1 : 0 : 1 I FD

9E

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag ("C" in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the
Accumulator.

114

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

SBC A, r 1 4 1.00
SBC A, n 2 7(4,3) 1.75
SBC A, (HL) 2 7(4,3) 1.75
SBC A, (IX+ d) 5 19(4,4,3,5,3) 4.75
SBC A, (IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 3433H, and address 3433H contains 05H, after the execution of

SBC A,(HL)

the Accumulator will contain 10H.

Example 2:

If the Carry Flag is set, the Accumulator contains 21H and register B contains 0,
then after the execution of

SBC A,B

the Accumulator contains 20H.

ANDs
Operation: A¢ Ao S

Format:

Mnemonic: AND Operands: s

The s operand is any ofr, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

115

SERIES I EDITOR/ASSEMBLER

Object Code:

ANDr J1:o:1:o:o:r:r:rl

ANDn J1:1:1:o:o:1:1:01 E6

Jn:n:n:n:n:n:n:nl

AND (HL) I 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 I A6

AND (IX+ d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 0 : 1 : 0 : 0 : 1 : 1 : 0 I A6

1d:d:d:d:d:d:d:d1

AND (IY + d) J 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

I 1 : . 0 : 1 : 0 : 0 : 1 : 1 : 0 I A6

1d:d:d:d:d:d:d:d1

r identifies register A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

116

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified
by the s operand and the byte contained in the Accumulator; the result is stored
in the Accumulator.

M 4MHz
Instruction Cycles T States E.T. in µs

ANDr 1 4 1.00
ANDn 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3,5,3) 4.75
AND (IX+d) 5 19(4,4,3 ,5 ,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of AND Values:

IF Then
A B A (After)

0 0 0
0 1 0
1 0 0
1 1 1

Example:

If the B register contains 7BH (01111011) and the Accumulator contains C3H
(11000011), after the execution of

AND B

the Accumulator will contain 43H (01000011).

ORs
Operation: A¢ A -o S

Format:

Mnemonic: OR Operands: s

117

SijRIES I EDITOR/ASSEMBLER

The s operand is any of r, n, (HL), (IX+d), or (IY+d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

ORr

ORn

OR (HL)

OR (IX+d)

OR (IY+d)

/1:0:1:1:0:r:r:rl

1 1 : 1 : 1 : 1 : o : 1 : 1 : o 1

ln:n:n:n:n:n:n:nl

I 1 ;o: 1: 1 :o: 1: 1 :ol

I 1: 1 :o: 1: 1: 1 :o: 1 I

/1:0:1:1:0:1:1:01

I d : d : d : d : d : d : d : d I

11:1:1:1:1:1:0:11

I 1 :o: 1: 1 :o: 1: 1 :01

1d:d:d:d:d:d:d:d1

F6

B6

DD

B6

FD

B6

r identifies register A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

118

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4MHz
Instruction Cycles T States E.T. in µs

ORr 1 4 1.00
ORn 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of OR Values:

IF Then
A B A (After)

0 0 0
0 1 1
1 0 1
1 1 1

Example:

If the H register contains 48H (01001000) and the Accumulator contains
12H (00010010), after the execution of

OR H

the Accumulator will contain 5AH (01011010).

XOR·s
Operation: A¢ AEBs

Format:

Mnemonic: XOR Operands: s

exclusive OR

119

SERIES I EDITOR/ASSEMBLER

The s operand is any of r, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:
Object Code:

XORr

XORn

XOR (HL)

XOR (IX+d)

XOR (IY+d)

J1:o:1:o:1:r:r:r1

11:1:1:0:1:1:1:01

ln:n:n:n:n:n:n:nl

11:0:1:0:1:1:1:01

11:1:0:1:1:1:0:11

11:0:1:0:1:1:1:01

1d:d:d:d:d:d:d:d1

11:1:1:1:1:1:0:11

11:0:1:0:1:1:1:01

1d:d:d:d:d:d:d:d1

EE

AE

DD

AE

FD

AE

r identifies registers A, B, C, D, E, Hor L assembled as follows in the object
code field above:
Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

120

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the result
is stored in the Accumulator.

M 4MHz
Instruction Cycles T States E.T. in µs

XORr 1 4 1.00
XORn 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,5 ,3) 4.75
XOR (IY+d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of XOR Values:

IF Then
A B A (After)

0 0 0
0 1 1
1 0 1
1 1 0

Note: in Table above that any two like numbers will result in zero.

Example 1:

If the Accumulator contains 96H (10010110), after the execution of

XOR 5DH (Note: 5DH=01011101)

the Accumulator will contain CBH (11001011).

Example 2:

The instruction

XOR A

will zero the Accumulator.

121

SERIES I EDITOR/ASSEMBLER

CPs
Operation: A- S

Format:

Mnemonic: CP Operands: s

The s operand is any ofr, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

CPr I 1 : 0 : 1 : 1 : 1 : r : r : r I

CPn I 1
:

1
:

1 : 1
:

1
:

1
:

1 : 0 I FE

ln:n:n:n:n:n:n:nJ

CP (HL) I 1 : 0 : 1
:

1 : 1 : 1 : 1 : 0 I BE

CP (IX+d) I 1
:

1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 0 : 1 : 1 : 1 : 1 : 1 : 0 I BE

1d:d:d:d:d:d:d:d1

CP (IY+d) I 1 : 1
:

1 : 1 : 1
:

1 : 0: 1 I FD

I
1 : 0 : 1

:
1 : 1 : 1 : 1 : o I BE

1d:d:d:d:d:d:d:d1

r identifies register A, B, C, D, E, Hor L assembled as follows in the object
code field above:

122

ComPare

8 BIT ARITHMETIC AND LOGICAL GROUP

Register r

A = 111
B = 000
C 001
D = 010
E 011
H = 100
L = 101

Description:

The contents of the s operand are compared with the contents of the
Accumulator. If there is a true compare, a flag is set.

M 4MHz
Instruction Cycles T States E.T. in µs

CPr 1 4 1.00
CPn 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX+d) 5 19(4,4,3,5,3) 4.75
CP (IY+d) 5 19(4,4,3,?,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow in Bit 7; reset otherwise

Example 1:

If the Accumulator contains 63H, the HL register pair contains 6000H and
memory location 6000H contains 60H, the instruction

CP (HL)

will result in all the flags being reset except N.

Example: 2

If the Accumulator contains 65H and register C also contains 65H, then after the
execution of

CP C

the Z flag will be set.

See Appendix E for more details of condition codes affected.

123

SERIES I EDITOR/ASSEMBLER

INC r INCrement

Operation: r Q r + 1

Format:

Mnemonic: INC Operands: r

Object Code:

Description:

Register r is incremented. r identifies any of the registers A, B, C, D, E, H or
L, assembled as follows in the object code.

Register r

A = 111
B = 000
C = 001
D = 010
E 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if r was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of register D are 28H, after the execution of

INC D

the contents of register D will be 29H.

124

8 BIT ARITHMETIC AND LOGICAL GROUP

INC (HL) INCrement

Operation: (HL) ¢ (HL) + 1

Format:

Mnemonic: INC Operands: (HL)

Object Code:

34

Description:

The byte contained in the address specified by the contents of the HL register
pair is incremented.

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the contents of address
3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

INC (IX+d) INCrement

Operation: (IX+ d) ¢(IX+ d) + 1

Format:

Mnemonic: INC Operands: (IX+ d)

125

SERIES I EDITOR/ASSEMBLER

Object Code:

11:1:0:1:1:1:0:11

io:o: 1: 1 :o: 1 :o:oJ

1d:d:d:d:d:d:d:d1

Description:

DD

34

The contents of the Index Register IX (register pair IX) are added to a two's
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H:. Set if carry from Bit 3; reset otherwise
P/V: Set if (IX+ d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and the memory
location 2030H contains byte 34H, after the execution of

INC (IX+ 10H)
the contents of memory location 2030H will be 35H.

INC (IV +d) INCrement

Operation: (IV+ d) ¢(IV+ d) + 1

Format:

Mnemonic: INC Operands: (IY + d)

126

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

!1:1:1:1:1:1:0:11

10:0:1:1:0:1:0:01

1d:d:d:d:d:d:d:d1

Description:

FD

34

The contents of the Index Register IY (register pair IY) are added to a two's
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IY + d) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example:

If the contents of the Index Register pair IY are 2020H, and the memory
location 2030H contain byte 34H, after the execution of
INC (IY + 10H)
the contents of memory location 2030H will be 35H.

DECm DECrement

Operation: m Q m -1

Format:

Mnemonic: DEC Operands: m

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous INC instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

127

SERIES I EDITOR/ASSEMBLER

Object Code:

DECr I O : 0 : r : r : r : 1 : 0 : 1 I

DEC (HL) jo:o: 1 : 1 : 0 : 1 : 0 : 1 I 35

DEC (IX+d) I 1
:

1 : 0 : 1 : 1
:

1 : 0 : 1 I DD

I o : o : 1
:

1 : 0 : 1 : 0 : 1 I 35

I d : d : d : d : d : d : d : d I

DEC (IY+d) I 1 : 1 : 1 : 1
:

1
:

1 : 0 : 1 I FD

jo:o: 1 : 1 : 0 : 1 : 0 : 1 I 35

1d:d:d:d:d:d:d:d1

r identifies register A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r

A- = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The byte specified by the m operand is decremented.

128

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

DECr 1 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23(4,4,3,5,4,3) 5.75
DEC (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if m was 80H before operation; reset otherwise
N: Set
C: Not affected

Example:

If the D register contains byte 2AH, after the execution of
DEC D

register D will contain 29H.

129

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

General Purpose Arithmetic and
CPU Control Groups

DAA
Operation: Decimal-Adjust Accumulator

Format:

Mnemonic: DAA Operands:

Object Code:

Description:
This instruction modifies the results of addition or subtraction so that the results
of binary arithmetic are correct for decimal numbers. The Binary Coded
Decimal (BCD) code uses the 8-bit accumulator as follows: the eight bits are
broken up into two groups of four bits, which represent a two-digit decimal
number from 00 to 99. If numbers like this are added with the binary adder in
the Z-80, answers larger than 10 may result in each decimal place. The DAA
instruction will "adjust" the answer so that each decimal place has a value of 9
or less, and so that the digits have the correct decimal value, though they were
added by a binary circuit. The carry and half-carry flags are used in this
conversion, as is a circuit that detects digits that are 10 or bigger.

Operation

ADD
ADC
INC

SUB
SBC
DEC
NEG

M cycles: 1

HEX HEX
Value in Value in

C Upper H Lower
Before Digit Before Digit
DAA (bits 7-4) DAA (bits 3-0)

0 0-9 0 0-9
0 0-8 0 A-F
0 0-9 1 0-3
0 A-F 0 0-9
0 9-F 0 A-F
0 A-F 1 0-3
1 0-2 0 0-9
1 0-2 0 A-F
1 0-3 1 0-3

0 0-9 0 0-9
0 0-8 1 6-F
1 7-F 0 0-9
1 6-F 1 6-F

T states: 4 4 MHz E.T.: 1.00

Number
Added C

to After
Byte DAA
00 0
06 0
06 0
60 1
66 1
66 1
60 1
66 1
66 1

00 0
FA 0
A0 1
9A 1

131

SERIES I EDITOR/ASSEMBLER

Condition Bits Affected:

S: Set if most significant bit of Acc. is 1 after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise
H: See instruction
P/V: Set if Acc. is even parity after operation; reset otherwise
N: Not affected
C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple
decimal arithmetic gives this result:

15
+27

42

But when the binary representations are added in the Accumulator according to
standard binary arithmetic,

0001 0101
+0010 0111 ----

0011 1100= 3C

the sum is not decimal. The DAA instruction adjusts this result so that the
correct BCD representation is obtained:

0011 1100
+0000 0110(adding 06 from table)

0100 0010=42

CPL ComPLement

Operation: A¢ A

Format:

Mnemonic: CPL Operands:

Object Code:

132

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

Contents of the Accumulator (register A) are inverted (one's complement).

M cycles: 1 T states: 4 4 MHz E.T.: 1.00
Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set
P/V: Not affected
N: Set
C: Not affected

Example:

If the contents of the Accumulator are 1011 0100, after the execution of

CPL

the Accumulator contents will be 0100 1011.

NEG
Operation: A¢ 0 - A

Format:

Mnemonic: NEG Operands:

Object Code:

J1:1:1:o:1:1:o:1I

lo: 1 :0:0:0: 1 :o:ol

Description:

ED

44

.NEGate

Contents of the Accumulator are negated (two's complement). This is the same
as subtracting the contents of the Accumulator from zero. Note that 80H is left
unchanged.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

133

SERIES I EDITOR/ASSEMBLER

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if Acc. was 80H before operation; reset otherwise
N: Set
C: Set if Ace. was not 00H before operation; reset otherwise

Example:

If the contents of the Accumulator are

111010111110 0 0
after the execution of

NEG
the Accumulator contents will be

10111110 1 0 0 0

CCF
Operation: CY¢ CY

Format:

Mnemonic: CCF Operands:

Object Code:

!0:0:1:1:1:1:1:11

Description:

The C flag in the F register is inverted.

Complement Carry Flag

3F

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Previous carry will be copied
P/V: Not affected
N: Reset
C: Set if CY was 0 before operation; reset otherwise

134

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

SCF Set Carry Flag

Operation: CY¢ 1

Format:

Mnemonic: SCF Operands:

Object Code:

Description:

The C flag in the F register is set.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Set

NOP No OPeration

Operation:

Format:

Mnemonic: NOP Operands:

Object Code:

00

135

SERIES I EDITOR/ASSEMBLER

Description:

CPU performs no operation during this machine cycle.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

HALT
Operation:

Format:

Mnemonic: HALT Operands:

Object Code:

76

Description:

The HALT instruction suspends CPU operation until a subs~quent interrupt or
reset is received. While in the halt state, the processor will execute NOP's to
maintain memory refresh logic.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

DI Disable Interrupts

Operation: I FF¢ 0

Format:

Mnemonic: DI Operands:

Object Code:

F3

136

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFFl and IFF2). Note that this instruction disables the maskable interrupt
during its execution.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently re-enabled by an EI
instruction. The CPU will not respond to an InterruptRequest (INT) signal.

El Enable Interrupts

Operation: ·IFF ¢ 1

Format:

Mnemonic: EI Operands:

Object Code:

FB

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops (IFFl
and IFF2). Note that this instruction disables the maslable interrupt during its
execution.

M cycles: 1 T states: 4

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.00

When the CPU executes instruction

RETI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt
Request (INT) signal.

137

SERIES I EDITOR/ASSEMBLER

IM 0
Operation:

Format:

Mnemonic: IM Operands: 0

Object Code:

11:1:1:0:1:1:0:11

Jo: 1 :o:o:o: 1: 1 :oJ

Description:

ED

46

Interrupt Mode 0

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting device
can insert any instruction on the data bus and allow the CPU to execute it. The
first byte of a multi-byte instruction is read during interrupt acknowledge cycle.
Subsequent bytes are read in by a normal memory read sequence.

M cycles: 2 T states: 8(4,4)

Condition Bits Affected: None

IM 1
Operation:

Format:

Mnemonic: IM Operands: 1

Object Code:

11:1:1:0:1:1:0:11

Jo:1:0:1:0:1:1:oJ

138

4 MHz E.T.: 2.00

Interrupt Mode 1

ED

56

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will
respond to an interrupt by executing a restart to location 0038H.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

IM 2
Operation:

Format:

Mnemonic: IM Operands: 2

Object Code:

1 1 : 1 :- 1 : o : 1 : 1 : o : 1 1

Jo'.1'.0:1'.1'.1'.1:ol

Description:

ED

5E

Interrupt Mode 2

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to
any location in memory. With this mode the CPU forms a 16-bit memory
address. The upper eight bits are the contents.of the Interrupt Vector Register I
and the lower eight bits are supplied by the interrupting device.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

139

16 BIT ARITHMETIC GROUP

16 Bit Arithmetic Group
ADD HL,ss
Operation: HL ¢ HL + SS

Format:

Mnemonic: ADD Operands: HL, ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added to the contents of register pair HL, and the result is stored in HL.
Operand ss is specified as follows in the assembled object code.

Register
Pair ss
BC 00
DE 01
HL 10
SP 11

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If register pair HL contains the integer 4242H and register pair DE contains
111 lH, after the execution of

ADD HL, DE

the HL register pair will contain 5353H.

141

SERIES I EDITOR/ASSEMBLER

ADC HL,ss ADd with Carry

Operation: HL¢ HL + ss + CY

Format:

Mnemonic: ADC Operands: HL, ss

Object Code:

I 1 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED

/0:1:s:s:1:o:1:o/

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added with the Carry Flag (C flag in the F register) to the contents of register
pair HL, and the result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Set if re.suit is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry out of Bit 11; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the
Carry Flag is set, after the execution of

ADC HL, BC

the contents of HL will be 765AH.

142

16 BIT ARITHMETIC GROUP

SBC HL,ss
Operation: HL¢ HL- ss - CY

Format:

Mnemonic: SBC Operands: HL, ss

Object Code:

!1:1:1:0:1:1:0:11

jo:1:s:s:0:0:1:01

Description:

SuBtract with Carry

ED

The contents of the register pair ss (any of register pairs BC, DE, HL or SP)
and the Carry Flag (C flag in the F register) are subtracted from the contents of
register pair HL and the result is stored in HL. Operand ss is specified as
follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair
DE are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

143

SERIES I EDITOR/ASSEMBLER

ADD IX,pp
Operation: IX¢ IX+ pp

Format:

Mnemonic: ADD Operands: IX,pp

Object Code:

I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

1 o : o : p : p : 1 : o : o : 1 1

Description:

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are
added to the contents of the Index Register IX, and the results are stored in IX.
Operand pp is specified as follows in the assembled object code.

Register
Pair pp

BC 00
DE 01
IX 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IX are 3333H and the contents of register pair
BC are 5555H, after the execution of

ADD IX, BC

the contents of IX will be 8888H.

144

16 BIT ARITHMETIC GROUP

ADD IY,rr
Operation: IY ¢ IY + rr

Format:

Mnemonic: ADD Operands: IY, IT

Object Code:

!1:1:1:1:1:1:0:11

Jo:o:r:r:1:o:o:1J

Description:

FD

The contents of register pair IT (any of register pairs BC, DE, IY or SP) are
added to the contents of Index Register IY, and the result is stored in IY.
Operand IT is specified as follows in the assembled object code.

Register
Pair rr

BC 00
DE 01
IY 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IY are 333H and the contents of register pair
BC are 555H, after the execution of

ADD IY, BC

the contents of IY will be 888H.

145

SERIES I EDITOR/ASSEMBLER

INCss INCrement

Operation: SS ¢ SS + 1

Format:

Mnemonic: INC · Operands: ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
incremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001H.

INC IX
Operation: IX¢ IX+ 1

Format:

Mnemonic: INC Operands: IX

146

INCrement

16 BIT ARITHMETIC GROUP

Object Code:

I 1
:

1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

1 o : o : 1 :o:o:o: 1 : 1 I 23

Description:

The contents of the Index Register IX are incremented.

M cycles: 2 T states: 10(4,6)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.50

If the Index Register IX contains the integer 3300H after the execution of

INC IX

the contents oflndex Register IX will be 3301H.

INC IY INCrement

Operation: IV¢ IV+ 1

Format:

Mnemonic: INC Operands: IY

Object Code:

11:1:1:1:1:1:0:11 FD

Io: o: 1 : o: o : o: 1 : 1 1 23

Description:

The contents of the Index Register IY are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

147

SERIES I EDITOR/ASSEMBLER

Example:

If the contents of the Index Register are 2977H, after the execution of

INC IY

the contents of Index Register IY will be 2978H.

DECss DECrement

Operation: SS ¢ SS -1

Format:

Mnemonic: DEC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are
decremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of

DEC HL

the contents of HL will be 1000H.

148

16 BIT ARITHMETIC GROUP

DECIX
Operation: IX¢ IX-1

Format:

Mnemonic: DEC Operands: IX

Object Code:

J1:1;0:1:1:1:o:1I

Jo:o: 1 :o: 1 :o: 1: 1 I

Description:

DD

2B

The contents of Index Register IX are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

DECrement

If the contents of Index Register IX are 2006H, after the execution of

DEC IX

the contents of Index Register IX will be 2005H.

DECIY
Operation: IV¢ IV -1

Format:

Mnemonic: DEC Operands: IY

Object Code:

J1:1:1:1:1:1:o:1I

Jo'.o'.1:o:1:o:1:1J

FD

2B

DECrement

149

SERIES I EDITOR/ASSEMBLER

Description:

The contents of the Index Register IY are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the execution of

DEC IY

the contents of Index Register IY will be 7648H.

150

ROTATE AND SHIFT GROUP

Rotate and Shift Group

RLCA Rotate Left Circular Accumulator

Operation: I CY I ~I 7 ¢ 0 I ~
A

Format:

Mnemonic: RLCA Operands:

Object Code:

Description:

07

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. (Bit 0 is the least significant bit.)

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 . 4 3 2 1 0

1 1 1 o I o o 1 o o o
after the execution of

RLCA

the contents of the Carry Flag and the Accumulator will be

C 7 6 5 4 3 2 1 0

OJ I o I o I o 1 1 1 o I o I o 1 1 1

151

SERIES I EDITOR/ASSEMBLER

RLA
Operation:~ ¢-1 7 •O I ;J

A
Format:

Mnemonic: RLA Operands:

Object Code:

Description:

17

Rotate Left Accumulator

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern
is continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and the previous content of the Carry Flag is copied
into bit 0. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Carry Flag and the Accumulator are

C 7 6 5 4 3 2 1 0

0]1011111110 1 1101
after the execution of

RLA

the contents of the Carry Flag and the Accumulator will be

C 7 6 5 4 3 2 1 0

ITJl 1111110111110111

152

ROTATE AND SHIFT GROUP

RRCA Rotate Right Circular Accumulator

Operation:~ \ 7:Q O ~ \ CY J

A
Format:

Mnemonic: RRCA Operands:

Object Code:

0F

Description:

The contents of the Accumulator (register A) are rotated right: the content of bit
7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
bit 7 and also into the Carry Flag (C flag in register F.) Bit 0 is the least
significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

1010 0 1 0 0 0 1

After the execution of

RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 l 2 1 0 C

I l I 0 I 0 I 0 I l I 0 I 0 I 0 I [I]

153

SERIES I EDITOR/ASSEMBLER

RRA
Operation:~ I 7--¢ 0 ~ [gyjJ

A
Format:

Mnemonic: RRA Operands:

Object Code:

1 o : o : o : • : • : • : • : • 1

Description:

IF

Rotate Right Accumulator

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag
is copied into bit 7. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

, If the contents of the Accumulator and the Carry Flag are

7 6 5 4 3 2 1 0 C

I 1 I 1 I 1 I O I O I O I O I 1 I C2J
after the execution of

RRA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 O C

1 o 1 1 1 1 1 1 1 o I o I o I o 1 [I]

154

ROTATE AND SHIFT GROUP

RLCr
Operation: I CY I ~ 7 •O I ~

r
Format:

Mnemonic: RLC Operands: r

Object Code:

11:1:0:0:1:0:1:11

I O : 0 : 0 : 0 : 0 : r : r : r I

Description:

Rotate Left Circular

CB

The eight-bit contents of register rare rotated left: the content of bit 0 is copied
into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. Operand r is specified as follows
in the assembled object code:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Note: Bit 0 is the least significant bit.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

155

SERIES I EDITOR/ASSEMBLER

Example:

If the contents of register r are

7 6 5 4 3 2 1 0

1110 01011 0 0 0
after the execution of

RLC r

the contents of the Carry Flag and register r will be

C 7 6 5 4 3 2 1 0

[JJ I o I o I o 1 o o o 1

RLC (HL)
Operation: I CY I ~ 7 •O I J

(HL)
Format:

Mnemonic: RLC Operands: (HL)

Object Code:

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

Jo:0:0:0:0:1:1:ol 06

Description:

Rotate Left Circular

The contents of the memory address specified by the contents of register pair
HL are rotated left: the content of bit 0 is copied into bit 1; the previous content
of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register F) and also into
bit 0. Bit 0 is the least significant bit.

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

156

ROTATE AND SHIFT GROUP

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the HL register pair are 2828H, and the contents of memory
location 2828H are

7 6 5 4 3 2 1 0

111010101110 0 0
after the execution of
RLC (HL)
the contents of the Carry Flag and memory locations 2828H will be

C 7 6 5 4 3 2 1 0

[D I o I o I o 1 1 1 o I o I o 1 1 1

RLC (IX+d)
Operation: I CY I ~-~7-¢-0--\ ~

(IX+ d)
Format:

Mnemonic: RLC Operands: (IX+ d)

Object Code:

11:1:0:1:1:1:0:11

11:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

1 o : o : o : o : o : 1 : 1 : o 1

DD

CB

06

Rotate Left Circular

157

SERIES I EDITOR/ASSEMBLER

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IX and a two's complement displacement integer d, are rotated
left: the contents of bit 0 is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout the byte. The content of
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0
is the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data fr9m Bit 7 of source register

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

after the execution of

RLC (IX+2H)

the contents of the Carry Flag and memory location 1002H will be

C 7 6 5 4 3 2 1 O

OJ I o o o 1 o o o 1

RLC (IY+d)
Operation: I CY I ~ 7 ¢-0 I ~

(IY+d)
Format:

Mnemonic: RLC Operands: (IY + d)

158

Rotate Left Circular

ROTATE AND SHIFT GROUP

Object Code:

,d:d:d:d:d:d:d:d,

1 o : o : o : o : o : 1 : 1 : o 1

Description:

FD

CB

06

The contents of the memory address specified by the sum of the contents of the
Index Register IY and a two's complement displacement integer dare rotated
left: the content of bit 0 is copied into bit 1; the previous content of bit 1 is
copied into bit 2; this process is continued throughout the byte. The content of
bit 7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0
is the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits AtTected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IY are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

159

SERIES I EDITOR/ASSEMBLER

after the execution of

RLC (IY+2H)
the contents of the Carry Flag and memory location 1002H will be

C 7 6 5 4 3 2 1 0

ITJ I o I o I o 1 1 1 o I o I o 1 1 1

Rlm
Operation:L[gyj ¢-1 7 •O I ;_)

m
Format:

Mnemonic: RL Operands: m

Rotate Left

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RLr

RL (HL)

RL (IX+d)

160

11:1:0:0:1:0:1:11

lo:0:0:1:0:r:r:rJ

11:1:0:0:1:0:1:11

lo:0:0: 1 :o: 1: 1 :o/

11:1:0:1:1:1:0:11

11:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

lo:o:o: 1 :o: 1: 1 :0/

CB

CB

16

DD

CB

16

ROTATE AND SHIFT GROUP

RL (IY+d) J1:1:1:1:1:1:o:1I

11:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

Jo:0:0: 1 :o: 1: 1 :ol

FD

CB

16

r identifies register B, C, D, E, H, Lor A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of the m operand are rotated left: the content of bit 0 is copied into
bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued
throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 0. Bit 0
is the least significant bit.

M 4MHz
Instruction Cycles T States E.T. in µs

RLr 2 8(4,4) 2.00
RL (HL) 4 15(4,4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

161

SERIES I EDITOR/ASSEMBLER

Example:

If the contents of the Carry Flag and register D are

C 7 6 5 4 3 2 1 0

[]]1110101011 1 1 1

after the execution of

RL D

the contents of the Carry Flag and register D will be

C 7 6 5 4 3 2 1 0

RRCm Rotate Right Circular

Operation:~ I 7--Q O ~ I CY I
m

Format:

Mnemonic: RRC Operands: m

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RRCr I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

10:0:0:0: 1 : r : r : r I

RRC (HL) I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1 0 : 0 : 0 : 0 : 1 : 1
:

1 : 0 I 0E

162

ROTATE AND SHIFT GROUP

RRC (IX+d)

RRC (IY+d)

11:1:0:1:1:1:0:11

11:1:0:0:1:0:1:11

I 1
:

1 : 1 : 1
:

1 : 1 : 0 : 1 I

I 1
:

1 : 0 : 0 : 1 : 0 : 1 : 1 I

1d:d:d:d:d:d:d:d1

jo:o:o:o: 1 : 1 : 1 : 0 I

DD

CB

0E

FD

CB

0E

r identifies register B, C, D, E, H, Lor A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand m are rotated right: the content of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
the F register) and also into bit 7. Bit 0 is the least significant bit.

163

SERIES I EDITOR/ASSEMBLER

M
Instruction Cycles T States

RRCr 2 8(4,4)
RRC (HL) 4 15(4,4,4,3)
RRC (IX+d) 6 23(4,4,3,5,4,3)
RRC (IY+d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register A are

7 6 5 4 3 2 1 0

101011 1 0 0 0 1
after the execution of

RRC A

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

11101011111010101[0

RRm
Operation:~ I 7--¢ 0 f-¢ ~

m
Format:

Mnemonic: RR Operands: m

Rotate Right

The m operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

164

ROTATE AND SHIFT GROUP

Object Code:

RR r J 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

I O : 0 : 0 : 1 : 1 : r : r : r I

RR (HL) J 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

Jo:0:0:1:1:1:1:01 IE

RR (IX+ d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1d:d:d:d:d:d:d:d1

10:0:0:1:1:1:1:01 IE

RR (IY + d) J 1 : 1 : 1 : 1 : 1 : 1 : 0 : 1 I FD

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1d:d:d:d:d:d:d:d1

l0:0:0:1:1:1:1:01 IE

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

165

SERIES I EDITOR/ASSEMBLER

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 7. Bit 0
is the least significant bit.

M 4MHz
Instruction Cycles T States E.T. in µs

RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75
RR (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of the HL register pair are 4343H, and the contents of memory
location 4343H and the Carry Flag are

7 6 5 4 3 2 1 0 C

1 1 1 1 1°1 1 1 1 1 1 1°1 1 1m

after the execution of
RR (HL)
the contents of location 4343H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

10111110111111 jol[IJ

SLAm
Operation: I CY I ~ 7 ¢-0 I ¢-0

m
Format:

Mnemonic: SLA Operands: m

166

Shift Left Arithmetic

ROTATE AND SHIFT GROUP

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:
Object Code:

SLAr

SLA (HL)

SLA (IX+d)

SLA (IY+d)

!1:1:0:0:1:0:1:1\

!0:0:1:0:0:r:r:rl

!1:1:0:0:1:0:1:1\

!o:o: 1 :0:0: 1: 1 :al

!1:1:0:1:1:1:0:11

!1:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

!o:o: 1 :0:0: 1: 1 '.ol

J1'.1'.1'.1'.1'.1:o:1I

!1:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

!o'.o'.1 :o'.o'.1: 1 :al

CB

CB

26

DD

CB

26

FD

CB

26

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code field above:

167

SERIES I EDITOR/ASSEMBLER

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

An arithmetic shift left is performed on the contents of operand m: bit 0 is reset,
the previous content of bit 0 is copied into bit 1, the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout; the content of bit 7 is
copied into the Carry Flag (C flag in register F). Bit 0 is the least significant bit.

I

M
Instruction Cycles T States

SLAr 2 8(4,4)
SLA (HL) 4 15(4,4,4,3)
SLA (IX+d) 6 23(4,4,3,5,4,3)
SLA (IY+d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

7 6 5 4 3 2 1 0

1110 1 1 0 0 0 1

after the execution of

SLA L

the contents of the Carry Flag and register L will be

C 7 6 5 4 3 2 1 O

OJ!o 1 1 o o o 1 o

168

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

ROTATE AND SHIFT GROUP

SRAm

Operation: w I CY I
Format:

Mnemonic: SRA Operands: m

Shift Right Arithmetic

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SRAr I 1
:

1 : 0 : 0 : 1 : 0 : 1
:

1 I CB

1 o : o : 1 : 0 : 1 : r : r : r I

SRA (HL) I 1 : 1 :a:o: 1 : 0 : 1 : 1 I CB

1 o : o : 1 : 0 : 1 : 1 : 1 : 0 I 2E

SRA (IX+d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I DD

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1d:d:d:d:d:d:d:d1

1 o : o : 1 : 0: 1 : 1 : 1 : 0 I 2E

169

SERIES I EDITOR/ASSEMBLER

SRA (IY+d) 11:1:1:1:1:1:0:11

11:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

10:0:1:0:1:1:1:01

FD

CB

2E

r means register B, C, D, E, H, Lor A specified as follows in the assembled
object code field above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

An arithmetic shift right is performed on the contents of operand m: the content
of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the byte. The content of bit 0 is copied into the
Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.
Bit 0 is the least significant bit.

M 4MHz
Instruction Cycles T States E.T. in µs

SRAr 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY+d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

170

ROTATE AND SHIFT GROUP

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1003H are

7 6 5 4 3 2 1 0

11101111111010101

after the execution of

SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 11011 1 1 0101ITJ

SRLm
Operation: 0-¢ I 7:f> O ~ I CY I

m
Format:

Mnemonic: SRL Operands: m

Shift Right Logical

The operand mis any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SRLr I 1 : 1 : 0 : 0 : 1 : 0 : 1
:

1 I CB

1 o : o : 1 : 1 : 1 : r : r : r I

SRL (HL) I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1 o : o : 1 : 1 : 1 : 1 : 1 : 0 I 3E

171

SERIES I EDITOR/ASSEMBLER

SRL (IX+d) I 1 : 1 : 0 : 1 : 1 : 1 : 0: 1 I DD

I 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I CB

1d:d:d:d:d:d:d:d1

1 o : o : 1 : 1 : 1 : 1 : 1 : 0 I 3E

SRL (IY+d) I 1
:

1 : 1
:

1
:

1 : 1 : 0 : 1 I FD

I 1 : 1 :o:o: 1 : 0 : 1 : 1 I CB

1d:d:d:d:d:d:d:d1

1 o : o : 1 : 1 : 1 : 1 : 1 : 0 I 3E

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code fields above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand m are shifted right: the content of bit 7 is copied into
bit 6; the content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag, and bit 7
is reset. Bit 0 is the least significant bit.

172

ROTATE AND SHIFT GROUP

M
Instruction Cycles T States

SRLr 2 8(4,4,)
SRL (HL) 4 15(4,4,4,3)
SRL (IX+d) 6 23(4,4,3,5,4,3)
SRL (IY+d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register B are

7 6 5 4 3 2 1 0

1110101011 1 1 1
after the execution of

SRL B

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

101110101011 1111[[]

RLD----, Rotate Left Decimal
I <b.

Operation: Al7 41;?1 1j~l3 f I (HL)

Format:

Mnemonic: RLD Operands:

173

SERIES I EDITOR/ASSEMBLER

Object Code:

ED

Jo:1:1:0:1:1:1:1! 6F

Description:

The contents of the low order four bits (bits 3, 2, 1 and 0) of the memory
location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same
memory location; the previous contents of those high order four bits are copied
into the low order four bits of the Accumulator (register A), and the previous
contents of the low order four bits of the Accumulator are copied into the low
order four bits of memory location (HL). The contents of the high order bits of
the Accumulator are unaffected. Note: (HL) means the memory location
specified by the contents of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise
Z: Set if Ace. is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

01111010 Accumulator

7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 (5000H)

174

ROTATE AND SHIFT GROUP

after the execution of

RLD

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0

I O I 1 1 1 0 0 1 1 Accumulator

7 6 5 4 3 2 1 0

I O I 0 0 1 1 0 1 0 (5000H)

RRD
Operation: Al7 41~1 t 113f 1 (HL)

Rotate Right Decimal

Format:

Mnemonic: RRD Operands:

Object Code:

J1:1:1:o:1:1:o:1J

Jo: 1: 1 :o:o: 1: 1: 1 J

Description:

ED

67

The contents of the low order four bits (bits 3, 2, 1 and 0) of memory location
(HL) are copied into the low order four bits of the Accumulator (register A); the
previous contents of the low order four bits of the Accumulator are copied into
the high order four bits (7, 6, 5 and 4) of location (HL); and the previous
contents of the high order four bits of (HL) are copied into the low order four
bits of (HL). The contents of the high order bits of the Accumulator are
unaffected. Note: (HL) means the memory location specified by the contents
of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

Condition Bits Affected:

175

SERIES I EDITOR/ASSEMBLER

S: Set if Acc. is negative after operation; reset otherwise
Z: Set if Ace. is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Ace, is even after operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

I 1 I 0 0 0 0 1 I O I 0 Accumulator

7 6 5 4 3 2 1 0

1°1°1 1 0 0 0 0 0 (5000H)

after the execution of

RRD
the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0

I 1101010 o o o o

7 6 5 4 3 2 1 0

1011 0 0 0 0 1 0

176

Accumulator

(5000H)

BIT SET, RESET AND TEST GROUP

Bit Set, Reset and Test Group

BIT b, r
Operation: Z ¢ r b

Format:

Mnemonic: BIT

Object Code:

Operands: b, r

11:1:0:0:1:0:1:11

I O : 1 : b : b : b : r : r : r I

Description:

CB

BIT test

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the indicated register. Operands b
and r are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

177

SERIES I EDITOR/ASSEMBLER

Example:

If bit 2 in register B contains 0, after the execution of

BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0.
(Bit 0 in register B is the least significant bit.)

BIT b,(HL)
Operation: Z ¢ (HL)b

Format:

Mnemonic: BIT Operands: b, (HL)

Object Code:

11:1:0:0:1:0:1:11

lo:1:b:b:b:1:1:ol

Description:

Bit Test.

CB

This instruction tests bit b in the memory location specified by the contents of
the HL register pair and sets the Z flag accordingly. Operand bis specified as
follows in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected:

178

BIT SET, RESET AND TEST GROUP

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected

Example:

If the HL register pair contains 444H, and bit 4 in the memory location 444H
contains 1, after the execution of

BIT 4,(HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 444H
will still contain 1. (Bit 0 in memory location 444H is the least significant bit.)

BIT b,(IX+ d) Bit Test

Operation: Z ¢(IX+ d)b

Format:

Mnemonic: BIT Operands: b, (IX+ d)

Object Code:

I 1 : 1 : 0 : 1 : 1
:

1 : 0 : 1 I DD

I 1 : 1 : 0 : 0 : 1 : 0 : 1
:

1 I CB

1d:d:d:d:d:d:d:d1

IO : 1 :b:b:b: 1
:

1 : 0 I

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents register pair IX (Index Register IX) and
the two's complement displacement integer d. Operand bis specified as follows
in the assembled object code.

179

SERIES I EDITOR/ASSEMBLER

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of
BIT 6,(IX + 4H)
the Z flag in the F register will contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit 0 in memory location 2004H is the least significant bit.)

BIT b,(IY+d) BIT Test

Operation: Z ¢ (IY + d)b

Format:

Mnemonic: BIT Operands: b, (IY + d)

Object Code:

I 1 : 1 : 1
:

1 : 1 : 1 : 0 : 1 FD

I 1 : 1 : 0 : 0 : 1 : 0 : 1
:

1 CB

ld:d:d:d:d:d:d: d

IO : 1 :b:b:b: 1 : 1 :o

180

BIT SET, RESET AND TEST GROUP

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents of register pair IY (Index Register IY) and
the two's complement displacement integer d. Operand bis specified as follows
in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(IY+4H)

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit 0 in memory location 2004H is the least significant bit.)

SET b,r
Operation: r b ¢ 1

Format:

Mnemonic: SET Operands: b, r

181

SERIES I EDITOR/ASSEMBLER

Object Code:

11:1:0:0:1:0:1:11

I 1 : 1 : b : b : b : r : r : r I

Description:

CB

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, Lor A)
is set. Operands b and r are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4)

Condition Bits Affected: None

Example:

After the execution of

SET 4,A

4 MHz E.T.: 2.00

bit 4 in register A will be set. (Bit 0 is the least significant bit.)

SET b,(HL)
Operation: (HL)b ¢ 1

Format:

Mnemonic: SET Operands: b, (HL)

182

BIT SET, RESET AND TEST GROUP

Object Code:

/1:1:0:0:1:0:1:11

/1:1:b:b:b:1:1:01

Description:

CB

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of
register pair HL is set. Operand b is specified as follows in the assembled object
code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of

SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H
is the least significant bit.)

SET b,(IX+d)
Operation: (IX+ d)b ¢ 1

Format:

Mnemonic: SET Operands: b, (IX+ d)

183

SERIES I 'EDITOR/ASSEMBLER

Object Code:

DD

CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IX register pair (Index Register IX) and the two's complement
integer d is set. Operand b is specified as follows in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the execution of

SET 0,(IX + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

184

BIT SET, RESET AND TEST GROUP

SET b,(IY+d)
Operation: (IY + d)b ¢ 1

Format:

Mnemonic: SET Operands: b, (IY + d)

Object Code:

11:1:1:1:1:1:0:11

11:1:0:0:1:0:1:11

1d:d:d:d:d:d:d:d1

11:1:b:b:b:1:1:01

Description:

FD

CB

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IY register pair (Index Register IY) and the two's complement
displacement d is set. Operand b is specified as follows in the assembled object
code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

185

SERIES I EDITOR/ASSEMBLER

Example:

If the contents of Index Register IY are 2000H, after the execution of

SET 0,(IY + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

RES b,m
Operation: Sb¢ 0

Format:

Mnemonic: RES Operands: b, m

RESet

Operand bis any bit (7 through 0) of the contents of them operand, (any of r,
(HL), (IX+ d) or (IY + d) as defined for the analogous SET instructions. These
various possible opcode-operand combinations are assembled as follows in the
object code:

Object Code:

RES b, r J 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I

J1:o:b:b:b:r:r:rl

RES b, (HL) J 1 : 1 : 0 : 0 : 1 : 0 : 1 : 1 I

J 1 :o:b:b:b: 1: 1 :01

RES b, (IX+ d) J 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I

186

J1:1:o:o:1:o:1:1I

1d:d:d:d:d:d:d:d1

J 1 :o:b:b:b: 1: 1 :01

CB

CB

DD

CB

BIT SET, RESET AND TEST GROUP

RES b, (IY + d) I 1 : 1 : 1 : 1 : 1
:

1 : 0 : 1 I FD

I 1 : 1 : 0 : 0 : 1 : 0 : 1
:

1 I CB

1d:d:d:d:d:d:d:d1

I 1 :o:b:b:b: 1
:

1 : 0 I
Bit

Reset b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

Description:

Bit bin operand mis reset.

M 4MHz
Instruction Cycles T States E.T. in µs

RES r 4
RES (HL) 4
RES (IX+d) 6
RES (IY+d) 6

Condition Bits Affected: None

Example 1:

After the execution of

8(4,4)
15(4,4,4,3)
23(4,4,3,5,4,3)
23(4,4,3,5,4,3)

RES 6,D (object code CB, B2H)

2.00
3.75
5.75
5.75

bit 6 in register D will be reset. (Bit 0 in register Dis the least significant bit.)

Example 2:

If HL contains 7000H and address 7000H contains FFH, after
RES 0,(HL)
address 7000H will contain FEH.

187

JUMP GROUP

Jump Group

JPnn
Operation: PC¢ nn

Format:

Mnemonic: JP Operands: nn

Object Code:

I 1 : 1 : 0 : 0 : 0 : 0 : 1 : 1 I C3

Jn:n:n:n:n:n:n:nl

Jn'.n'.n:n:n:n:n:nJ

JumP

Note: The first operand in this assembled object code is the low order byte of a
2-byte address.

Description:

Operand nn is loaded into register pair PC (Program Counter) and points to the
address of the next program instruction to be executed.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

JP 50Al

This instruction will cause the program to jump to the instruction at 50AlH by
loading the number 50AIH into the PC register.

189

SERIES I EDITOR/ASSEMBLER

JP cc,nn
Operation: IF cc TRUE, PC¢nn

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

J 1: 1 '.c<cc'.c< 0: 1: 0 I

Jn:n:n:n:n:n:n:nl

Jn:n:n:n:n:n:n:nl

JumP

Note: The first n operand in this assembled object code is the low order byte of a
2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. Condition
cc is programmed as one of eight status bits which correspond to condition bits
in the Flag Register (register F). These eight status bits are defined in the table
below, which also specifies the corresponding cc bit fields in the assembled
object code.

cc Condition

000 NZ non-zero
001 Z zero
010 NC no-carry
011 C carry
100 PO parity odd
101 PE parity even
110 P sign positive
111 M sign negative

Relevant
Flag

Z (=0)
Z (= 1)
C (=0)
C (= 1)
P/V(=0)
P/VJ = 1)
S (=0)
S (=l)

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

190

4 MHz E.T.: 2.50

JUMP GROUP

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are 03H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the
CPU will fetch from address 1520H the byte 03H.

JRe
Operation: PC¢ PC + e

Format:

Mnemonic: JR Operands: e

Object Code:

1 o : o : o : 1 : 1 : o : o : o 1

1~2:~2:~2:~2:~2:~2:~2:~2I

Description:

Jump Relative

18

This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. This jump as measured from the address of the instruction
opcode has a range of -126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

Condition Bits Affected: None

Example 1:

To jump forward five locations from address 480, the following assembly
language statement is used:

JR $+5

The resulting object code and final PC value is shown below:

191

SERIES I EDITOR/ASSEMBLER

Location Instruction
480 18
481 03
482 -¢ PC before jump
483
484
485 ¢ PC after jump

Note: when using an assembler, $ + 5 used above would normally be replaced
by a label.

Example 2:

This program will skip around the NOP instruction.

START JR, END
NOP

END

JRC,e
Operation: If C = 0, continue

If C= 1, PC¢PC+e

Format:

Mnemonic: JR Operands: C, e

Object Code:

jo:o: 1: 1: 1 :o:o:ol

1~2:~2:~2:~2:~2:~2:~2:~21

Description:

38

Jump Relative

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to a '1 ; the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of -126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the flag is equal to a '0; the next instruction to be executed is taken from the
location following this instruction.

192

JUMP GROUP

If condition is met:
M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If condition is not met:
M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back four locations from 480.
The assembly language statement is:

JR C, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C ¢PC after jump
47D
47E
47F

38 480
481
482

FA (two's complement - 6)
¢ PC before jump

JR NC,e
Operation: If C = 1 , continue

If C=0, PC¢PC+e

Format:

Mnemonic: JR Operands: NC, e

Object Code:

1 o: o: 1 : 1 : o: o: o: o 1 30

1~:~2:~2:~2:~2:~2:~2:~21

Description:

Jump Relative

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to •0; the value of the displacement e is added to the Program Counter (PC) and

193

SERIES I EDITOR/ASSEMBLER

the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
a range of -126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a '1; the next instruction to be executed is taken from the
location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 7 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction.
The assembly language statement is:

JR NC,$

The resulting object code and PC after the jump are shown below:

Location Instruction

480 30 ¢ PC after jump
481 FD (two's complement - 2)
482 - ¢ PC before jump

Note: this instruction would cause an infinite loop in the program.

JRZ,e Jump Relative

Operation: 2 = 0, continue
If Z= 1, PC¢PC+e

Format:

Mnemonic: JR Operands: Z, e

Object Code:

1 o: o: 1 : o: 1 : o: o: o 1 28

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

194

JUMP GROUP

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal
to a '1; the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of -126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the Zero Flag is equal to a •0; the next instruction to be executed is taken
from the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward five locations from
address 300. The following assembly language statement is used:

JR Z, $+5

The resulting object code and final PC value is shown below:

Location Instruction

300 28
301 03
302 -¢ PC before jump
303
304
305 -¢ PC after jump

JR NZ,e
Operation: If Z = 1, continue

If 2=0, PC¢PC+e

Format:

Mnemonic: JR Operands: NZ, e

Jump Relative

195

SERIES I EDITOR/ASSEMBLER

Object Code:

1 o : o : 1 : o : o : o : o : o 1

je-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

20

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal
to a '0; the value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. The jump as measured from the address of the instruction
opcode has a range of -126 to + 129 bytes. The assembler automatically
adjusts for the twice incremented PC.

If the Zero Flag is equal to a '1; the next instruction to be executed is taken
from the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back four locations from 480.
The assembly language statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C ¢PC after jump
47D
47E
47F
480 20
481 FA (two's complement-6)
482 - ¢ PC before jump

196

JUMP GROUP

JP (HL) Jump

Operation: PC¢ HL

Format:

Mnemonic: JP Operands: (HL)

Object Code:

E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL
register pair. The next instruction is fetched from the location designated by the
new contents of the PC.

M cycles: 1 T states: 4 4MHzE.T.: 1.00

Condition Bits Affected: None

Example 1:

If the contents of the Program Counter are 1000H and the contents of the HL
register pair are 4800H, after the execution of
JP (HL)
the contents of the Program Counter will be 4800H.
The program will jump to the instruction at address 4800H.

Example 2:

A typical software routine which uses JP (HL) is a jump table lookup program.
Assume that n 16-bit addresses are listed in consecutive bytes of memory
starting at address TBL. Also assume that the Accumulator contains a number
from 0 to n-1 representing the routine to be jumped to.

LO HL, TBL ; HL points to the first byte in the table.
ADD A, A ; double A
LO DE, 0
LO E,A
ADD HL, DE ; if A originally contained 5, then HL now points to the

5th address in the table
LO E, (HL)
INC HL
LO D, (HL) ; DE now contains the 5th address of the table
LO HL, DE ; HL now contains the 5th address of the table
JP (HL)

197

SERIES I EDITOR/ASSEMBLER

JP (IX)
Operation: PC¢ IX

Format:

Mnemonic: JP Operands: (IX)

Object Code:

11:1:0:1:1:1:0:11

11:1:1:0:1:0:0:11

Description:

DD

E9

JumP

The Program Counter (register pair PC) is loaded with the contents of the
IX Register Pair (Index Register IX). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.00

If the contents of the Program Counter are 1000H, and the contents of the
IX Register Pair are 4800H, after the execution of

JP (IX)
the contents of the Program Counter will be 4800H.

JP (IY) JumP

Operation: PC¢ IV

Format:

Mnemonic: JP Operands: (IY)

Object Code:

198

11:1:1:1:1:1:0:11

11:1:1:0:1:0:0:11

Description:

FD

E9

The Program Counter (register pair PC) is loaded with the contents of the
IY Register Pair (Index Register IY). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.00

If the contents of the Program Counter are 1000H and the contents of the
IY Register Pair are 4800H, after the execution of

JP (IY)

the contents of the Program Counter will be 4800H.

JUMP GROUP

DJNZe Decrement Jump Not Zero

Operation:

Format:

Mnemonic: DJNZ Operands: e

Object Code:

1 o : o : o : 1 : o : o : o : o 1

le-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

10

The instruction is similar to the conditional jump instructions except that a
register value is used to determine branching. The B register is decremented
and if a non zero value remains, the value of the displacement e is added to
the Program Counter (PC). The next instruction is fetched from the location

199

SERIES I EDITOR/ASSEMBLER

designated by the new contents of the PC. The jump is measured from
the address of the instruction opcode has a range of -126 to + 129 bytes.
The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction
to be executed is taken from the location following this instruction.

If B=#:0:

M cycles: 3

If B=0:

T states: 13(5,3,5) 4 MHz E.T.: 3.25

M cycles: 2 T states: 8(5,3) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DJNZ
instruction. This routine moves a line from an input buffer (INBUF) to an output
buffer (OUTBUF). It moves the bytes until it finds a carriage return, or until it
has moved 80 bytes, whichever occurs first.

LD B, 80 ; Set up counter
LD HL, Inbuf ; Set up pointers
LD DE, Outbuf

LOOP: LD A, (HL) ; Get next byte from
; input buffer

LD (DE), A ; Store in output buffer
CP 0DH ; Is it a CR?
JR Z, DONE ; Yes finished
INC HL ; Increment pointers
INC DE
DJNZ LOOP ; Loop back if 80

; bytes have not
; been moved

DONE:

200

CALL AND RETURN GROUP

Call and Return Group

CALLnn
Operation: (SP -1) ¢ PCH, (SP - 2) ¢ PCL, PC¢ nn

Format:

Mnemonic: CALL Operands: nn

Object Code:

11:1:0:0:1:1:0:11

Jn:n:n:n:n:n:n:nl

Jn:n:n:n:n:n:n:nl

CD

Note: The first of the two n operands in the assembled object code above is the
least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of
the external memory stack, the operands nn are loaded into PC to point to the
address in memory where the first opcode of a subroutine is to be fetched. (At
the end of the subroutine, a RETurn instruction can be used to return to the
original program flow by popping the top of the stack back into PC.) The push
is accomplished by first decrementing the current contents of the Stack Pointer
(register pair SP), loading the high-order byte of the PC contents into the
memory address now pointed to by the SP; then decrementing SP again, and
loading the low-order byte of the PC contents into the top of stack. Note:
Because this is a three-byte instruction, the Program Counter will have been
incremented by three before the push is executed.

M cycles: 5 T states: 17(4,3,4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.25

If the contents of the Program Counter are 1A47H, the contents of the Stack
Pointer are 3002H, and memory locations have the contents:

201

SERIES I EDITOR/ASSEMBLER

Location Contents

1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction CD3521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H
will be lAH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Before:

Stack Pointer Address Stack

3002 3002 50
3003 1B
3004 3C

Program Counter
1A47

After CALL 2135H:

Stack Pointer Address Stack

3000 3000 4A
3001 lA
3002 50
3003 1B

Program Counter

2135

CALLcc,nn
Operation: IF cc TRUE: (SP-1) ¢ PCH

(SP-2) ¢ PCL, PC¢nn

Format:

Mnemonic: CALL Operands: cc, nn

202

CALL AND RETURN GROUP

Object Code:

i 1 : 1 >< cc >< 1 : o : o 1

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Note: The first of the two n operands in the assembled object code above is the
least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the
Program Counter (PC) onto the top of the external memory stack, then loads
the operands nn into PC to point to the address in memory where the first
opcode of a subroutine is to be fetched. (At the end of the subroutine, a RETum
instruction can be used to return to the original program flow by popping the top
of the stack back into PC.) If condition cc is false, the Program Counter is
incremented as usual, and the program continues with the next sequential
instruction. The stack push is accomplished by first decrementing the current
contents of the Stack Pointer (SP), loading the high-order byte of the PC
contents into the memory address now pointed to by SP, then decrementing
SP again, and loading the low-order byte of the PC contents into the top of the
stack. Note: Because this is a three-byte instruction, the Program Counter will
have been incremented by three before the push is executed. Condition cc is
programmed as one of eight status bits which corresponds to condition bits in
the Flag Register (register F). Those eight status bits are defined in the table
below, which also specifies the corresponding cc bit fields in the assembled
object code:

Relevant
cc Condition Flag

000 NZ non-zero z (=0)
001 Z zero z (= 1)
010 NC non-carry C (=0)
011 C carry C (= 1)
100 PO parity odd P/V(=0)
101 PE parity even P/V(=l)
110 P sign positive s (=0)
111 M sign negative s (= 1)

203

SERIES I EDITOR/ASSEMBLER

If cc is true:

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz E.T.: 4.25

If cc is false:

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are
1A47H, the contents of the Stack Pointer are 3002H, and memory locations
have the contents:

Location
1A47H
1A48H
1A49H

Contents
D4H
35H
21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H
will be lAH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

RET RETurn

Operation: PCL ¢(SP), PCH¢(SP + 1)

Format:

Mnemonic: RET Operands:

Object Code:

Description:

Control is returned to the original program flow by popping the previous
contents of the Program Counter (PC) off the top of the external memory stack,
where they were pushed by the CALL instruction. This is accomplished by first
loading the low-order byte of the PC with the contents of the memory address

204

CALL AND RETURN GROUP

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the
high-order byte of the PC with the contents of the memory address now pointed
to by the SP. (The SP is now incremented a second time.) On the following
machine cycle the CPU will fetch the next program opcode from the location in
memory now pointed to by the PC.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 2000H are B5H, and the
contents of memory location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to
be fetched.

Before:

Program Counter Address Stack
3535 2000 B5

2001 18
2002 2E
2003 30

Stack Pointer
2000

After RET:

Program Counter Address Stack
18B5 2002 2E

2003 30

Stack Pointer
2002

RETcc RETurn

Operation: IF CC TRUE: PCL ¢ (SP), PCH ¢(SP+ 1)

Format:

Mnemonic: RET Operands: cc

205

SERIES I EDITOR/ASSEMBLER

Object Code:

Description:

If condition cc is true, control is returned to the original program flow by
popping the previous contents of the Program Counter (PC) off the top of the
external memory stack, where they were pushed by the CALL instruction. This
is accomplished by first loading the low-order byte of the PC with the contents
of the memory address pointed to by the Stack Pointer (SP), then incrementing
the SP, and loading the high-order byte of the PC with the contents of the
memory address now pointed to by the SP. (The SP is now incremented a
second time.) On the following machine cycle the CPU will fetch the next
program opcode from the location in memory now pointed to by the PC. If
condition cc is false, the PC is simply incremented as usual, and the program
continues with the next sequential instruction. Condition cc is programmed as
one of eight status bits which correspond to condition bits in the Flag Register
F). These eight status bits are defined in the table below, which also specifies
the corresponding cc bit fields in the assembled object code.

Relevant
cc Condition Flag

000 NZ non-zero z (=0)
001 Zzero z (= 1)
010 NC non-carry C (=0)
011 C carry C (= 1)
100 PO parity odd P/V(=0)
101 PE parity even P/V(=l)
110 P sign positive s (=0)
111 M sign negative s (= 1)

If cc is true:

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

If cc is false:

M cycles: 1 T states: 5 4 MHz E.T.: 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are
3535H, the contents of the Stack Pointer are 2000H, the contents of memory
location 2000H are B5H, and the contents of memory location 2001H are 18H,
then after the execution of

RET M

206

CALL AND RETURN GROUP

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to
be fetched.

RETI
Operation: Return from interrupt

Format:

Mnemonic: RETI Operands:

Object Code:

11:1:1:0:1:1:0:11

10:1:0:0:1:1:0:11

Description:

ED

4D

This instruction is used at the end of an interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET
instruction).

2. To signal an 1/0 device that the interrupt routine has been completed. The
RETI instruction facilitates the nesting of interrupts, allowing higher priority
devices to suspend service of lower priority service routines. This instruction
also resets the IFFl and IFF2 flip flops.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B, connected in a daisy chain
configuration with A having a higher priority than B.

+ A B

y IEI IEO H IEI mo r
00 I I
B generates an interrupt and is acknowledged. (The interrupt enable out, IEO,
of B goes low, blocking any lower priority devices from interrupting while B is
being serviced). Then A generates an interrupt, suspending service of B. (The

207

.

SERIES I EDITOR/ASSEMBLER

IEO of A goes 'low' indicating that a higher priority device is being serviced.)
The A routine is completed and a RETI is issued resetting the IEO of A,
allowing the B routine to continue. A second RETI is issued on completion of
the B routine and the IEO of Bis reset (high), allowing lower priority devices
interrupt access.

RETN
Operation: Return from non maskable interrupt

Format:

Mnemonic: RETN Operands:

Object Code:

I 1 : 1 : 1 : 0 : 1 : 1 : 0 : 1 I ED

Io : 1 :o:o:o: 1 : 0 : 1 I 45

Description:

Used at the end of a service routine for a non maskable interrupt, this instruction
executes an unconditional return which functions identically to the RET
instruction. That is, the previously stored contents of the Program Counter (PC)
are popped off the top of the external memory stack; the low-order byte of PC is
loaded with the contents of the memory location pointed to by the Stack Pointer
(SP), SP is incremented, the high-order byte of PC is loaded with the contents
of the memory location now pointed to by SP, and SP is incremented again.
Control is now returned to the original program flow: on the following machine
cycle the CPU will fetch the next opcode from the location in memory now
pointed to by the PC. Also the state of IFF2 is copied back into IFFl to the state
it had prior to the acceptance of the NMI.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program
Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the
CPU will ignore the next instruction and will instead restart to memory address

· 0066H. That is, the current Program Counter contents of 1A45H will be pushed
onto the external stack address of 0FFFH and 0FFEH, high order byte first, and

208

CALL AND RETURN GROUP

0066H will be loaded onto the Program Counter. That address begins an
interrupt service routine which ends with RETN instruction. Upon the execution
of RETN, the former Program Counter contents are popped off the external
memory stack, low-order first, resulting in a Stack Pointer contents again of
1000H. The program flow continues where it left off with an opcode fetch to
address 1A45H.

RSTp ReSTart

Operation: (SP -1) ¢ PCH, (SP - 2) ¢ PCL, PCH ¢ 0, PCL ¢ P

Format:

Mnemonic: RST Operands: P

Object Code:

Description:

The current Program Counter (PC) contents are pushed onto the external
memory stack, and the page zero memory location given by operand p is loaded
into the PC. Program execution then begins with the opcode in the address now
pointed to by PC. The push is performed by first decrementing the contents of
the Stack Pointer (SP), loading the high-order byte of PC into the memory
address now pointed to by SP, decrementing SP again, and loading the low
order byte of PC into the address now pointed to by SP. The ReSTart instruction
allows for a Call to a subroutine at one of eight addresses as shown in the table
below. The operand pis assembled into the object code using the t column of
the table. Note: Since all addresses are in page zero of memory, the high order
byte of PC is loaded with OOH. The number selected from the "p" column of
the table is loaded into the low-order byte of PC.
At the end of the subroutine a RETurn instruction can be used to return to the
original program by popping the top of the stack back into PC.

p t
OOH 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

209

SERIES I EDITOR/ASSEMBLER

Example:

If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 11011111)

the PC will contain 0018H, as the address of the next opcode to be fetched, and
the top number on the stack will be 15B3H.

210

INPUT AND OUTPUT GROUP

Input and Output Group

IN A,(n)
Operation: A¢ (n)

Format:

Mnemonic: IN Operands: A, (n)

Object Code:

1 :1:0:1:1:0:1:11

\n:n:n:n:n:n:n:n\

Description:

DB

INput

The number of the input port is n. Data is input to register A. The operand n is
placed on the bottom half (A0 through A 7) of the address bus to select the I/0
device at one of 256 possible ports. The contents of the Accumulator also
appear on the top half (A8 through A15) of the address bus at this time. Then
one byte from the selected port is placed on the data bus and written in,to the
Accumulator (register A) in the CPU.

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the
peripheral device mapped to I/0 port address 01H, then after the execution of

IN A,(01H)

the Accumulator will contain 7BH.

211

SERIES I EDITOR/ASSEMBLER

IN r,(C) INput

Operation: r ¢ (C)

Format:

Mnemonic: IN Operands: r, (C)

Object Code:

11:1:1:0:1:1:0:11 ED

!o:1:r:r:r:0:0:oJ

Description:

Register C contains the number of the input port. Data is input to register r.
The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the 1/0 device at one of 256 possible ports. The contents of
Register Bare placed on the top half (AS through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
into register r in the CPU. Register r identifies any of the CPU registers shown
in the following table, which also shows the corresponding three-bit "r" field
for each. The flags will be affected, checking the input data.

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Not affected

212

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 10H, and the
byte 7BH is available at the peripheral device mapped to I/0 port address 07H,
then after the execution of

IN D,(C)

register D will contain 7BH

A typical use of the IN r, (C) instruction is for polled 1/0. The following
program continually polls or inputs data from port FF until a non-zero number
appears. The program then reads in data from port FE. In this application, port
FF is used as a data ready signal for port FE.

LOOP

INI

LD
IN
JR
IN

C, 0FFH
B, (C)
Z, LOOP
A, (0FEH)

; C points at port FF
; input port FF to register B
; continue polling until not zero
; input port FE to register A

INput & Increment

Operation: (HL)¢(C), B¢B-1, HL¢HL+1

Format:

Mnemonic: INI Operands:

Object Code:

\1:1:1:0:1:1:0:11

j 1 :a: 1 :a:o:o: 1 :a\

Description:

ED

A2

Register C contains the number of the input port. Data input is placed in
memory at the address pointed at by HL. The contents of register C are placed
on the bottom half (A0 through A 7) of the address bus to select the 1/0 device at
one of 256 possible ports. Register B may be used as a byte counter, and its
contents are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are then placed on the address
bus and the input byte is written into the corresponding location of memory.
Finally the byte counter is decremented and register pair HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

213

SERIES I EDITOR/ASSEMBLER

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register Care 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to 1/0 port address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain
1001H, and register B will contain 0FH.

The following program will input data from input ports 1 through 80 and place
the data into a buffer in memory.

LD
LD
LD

LOOP INC

INIR

INI
JP

B, 80
C,O
HL, BUFF
C

NZ,LOOP

INput Increment & Repeat.

Operation: (HL)¢(C), 8¢8-1, HL¢HL+1

Format:

Mnemonic: INIR Operands:

Object Code:

11:1:1:0:1:1:0:11 ED

I 1 : 0 : 1 : 1 : 0 : 0 : 1 : 0 I B2

214

INPUT AND OUTPUT GROUP

Description:

Register C contains the number of the input port. The data input is placed in
memory at the address pointed at by the HL register pair. The contents of
register C are placed on the bottom half (A0 through A 7) of the address bus to
select the I/0 device at one of 256 possible ports. Register B is used as a byte
counter, and its contents are placed on the top half (A8 through A15) of the
address bus at this time. Then one byte from the selected port is placed on
the data bus and written to the CPU. The contents of the HL register pair are
placed on the address bus and the input byte is written into the corresponding
location of memory. Then register pair HL is incremented, the byte counter is
decremented. If decrementing causes B to go to zero, the instruction is
terminated. If Bis not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes
of data will be input. Also interrupts will be recognized after each data transfer.

If B 4=0:

M cycles: 5

If B=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of
bytes are available at the peripheral device mapped to 1/0 port of address 07H:

51H
A9H
03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and
memory locations will have contents as follows:

Location

1000H
1001H
1002H

Contents

51H
A9H
03H

215

SERIES I EDITOR/ASSEMBLER

Here is a program to input 80 bytes from I/0 port number FF and put them into
an 80-byte buffer starting at address BUFF.

LD
LD
LD
IN IR

HL, BUFF
B, 80
C,OFFH

; HL points at first byte of buff er
; load byte counter
; port FF
; input 80 bytes

Note: this assumes that the input port can be synchronized with the input
instructions.

IND INput & Decrement

Operation: (HL)¢(C), 8¢8-1, HL¢HL-1

Format:

Mnemonic: IND Operands:

Object Code:

11:1:1:0:1:1:0:11 ED

1):0:1:0:1:0:1:01 AA

Description:

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the I/0 device at one of 256 possible ports. Register B may
be used as a byte counter, and its contents are placed on the top half (A8
through A15) of the address bus at this time. Then one byte from the selected
port is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter and register pair HL
are decremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

216

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to I/0 port.address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain
0FFFH, and register B will contain 0FH.

INDR INput Decrement & Repeat

Operation: (HL) ¢ (C), B ¢ B-1, HL¢HL-1

Format:

Mnemonic: INDR Operands:

Object Code:

11:1:1:0:1:1:0:11

11:0:1:1:1:0:1:01

Description:

ED

BA

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the I/0 device at one of 256 possible ports. Register B is
used as a byte counter, and its contents are placed on the top half (AS through
A15) of the address bus at this time. Then one byte from the selected port
is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into
the corresponding location of memory. Then HL and the byte counter
are decremented. If decrementing causes B to go to zero, the instruction is
terminated. If Bis not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of
data will be input. Also interrupts will be recognized after each data transfer.

If B 4:0:

M cycles: 5

If B=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

217

SERIES I EDITOR/ASSEMBLER

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to 1/0 port address 07H:

51H
A9H
03H

then after the execution of

INDR

the HL register pair will contain 0FFDH, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

0FFEH 03H
0FFFH A9H
1000H 51H

OUT (n),A OUTput

Operation: (n) ¢A

Format:

Mnemonic: OUT Operands: (n), A

Object Code:

I 1 : 1 : 0 : 1 : 0 : 0 : 1 : 1 I D3

ln:n:n:n:n:n:n:nJ

218

INPUT AND OUTPUT GROUP

Description:

The operand n is placed on the bottom half (A0 through A 7) of the address
bus to select the I/0 device at one of 256 possible ports. The contents of the
Accumulator (register A) also appear on the top half (A8 through A15) of the
address bus at this time. Then the byte contained in the Accumulator is placed
on the data bus and written into the selected peripheral device.

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of

OUT 01H,A

the byte 23H will have been written to the peripheral device mapped to 1/0 port
address 01H.

OUT (C),r
Operation: (C) ¢ r

Format:

Mnemonic: OUT Operands: (C), r

Object Code:

11:1:1:0:1:1:0:11

lo:1:r:r:r:0:0:11

Description:

OUTput

ED

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the 1/0 device at one of 256 possible ports. The contents of
Register Bare placed on the top half (A8 through A15) of the address bus at this
time. Then the byte contained in register r is placed on the data bus and written
into the selected peripheral device. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding three-bit "r"
field for each which appears in the assembled object code:

219

SERIES I EDITOR/ASSEMBLER

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected: None

Example:

If the contents of register C are 01H and the contents of register Dare 5AH,
after the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to 1/0 port
address 01H.

OUTI
Operation: (C) ¢ (HL), B ¢ B -1, HL¢ HL + 1

Format:

Mnemonic: OUTI Operands:

Object Code:

J1:1:1:o:1:1:o:1J

J1:o:1:o:o:o:1:1I

Description:

ED

A3

OUTput & Increment

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus
to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through

220

INPUT AND OUTPUT GROUP

Al5) of the address bus. The byte to be output is placed on the data bus and
written into selected peripheral device. Finally the register pair HL is
incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory address
1000H are 59H, then after the execution of

OUTI

register B will contain 0FH, the HL register pair will contain 1001H, and the
byte 59H will have been written to the peripheral device mapped to 1/0 port
address 07H.

OTIR OuTput Increment & Repeat

Operation: (C)¢(HL), 8¢8-1, HL¢HL+1

Format:

Mnemonic: OTIR Operands:

Object Code:

11:1:1:0:1:1:0:11

I :0:1:1:0:0:1:11

Description:

ED

B3

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus

221

SERIES I EDITOR/ASSEMBLER

to select the I/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (AS through
Al5) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL
is incremented. If the decremented B register is not zero, the Program Counter
(PC) is decremented by two and the instruction is repeated. If B has gone to
zero, the instruction is terminated. Note that if B is set to zero prior to
instruction execution, the instruction will output 256 bytes of data. Also,
interrupts will be recognized after each data transfer.

If B =#= 0:

M cycles: 5

If B=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to I/0
port address 07H in the following sequence:

51H
A9H
03H

222

INPUT AND OUTPUT GROUP

OUTD OUTput & Decrement

Operation: (C)¢(HL), B¢B-1, HL¢HL-1

Format:

Mnemonic: 0UTD Operands:

Object Code:

11:1:1:0:1:1:0:11 ED

11:0:1:0:1:0:1:11 AB

Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus
to select the 1/0 device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through
Al5) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Finally the register pair
HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory location
1000H are 59H, after the execution of
0UTD
register B will contain 0FH, the HL register pair will contain 0FFFH, and the
byte 59H will have been written to the peripheral device mapped to 1/0 port
address 07H.

223

SERIES I EDITOR/ASSEMBLER

OTDR OUTput Decrement & Repeat

Operation: (C) ¢ (HL), B ¢ B-1, HL¢ HL-1

Format:

Mnemonic: OTDR Operands:

Object Code:

11:1:1:0:1:1:0:11

11:0:1:1:1:0:1:11

Description:

ED

BB

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus
to select the UO device at one of 256 possible ports. Register B may be used as
a byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not zero, the Program Counter
(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if B is set to zero prior to instruction
execution, the instruction will output 256 byte of data. Also, interrupts will be
recognized after each data transfer.

If B ::f.:0:

M cycles: 5

If B=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

224

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents
0FFEH 51H
0FFFH A9H
1000H 03H

then after the execution of

OTDR

the HL register pair will contain 0FFDH, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to I/0
port address 07H in the following sequence:

03H
A9H
51H

225

Appendix A/Using the TPSRC Utility
(Disk Systems Only)
This utility allows disk systems to:

A. Read the source tapes created by the tape version of the Editor/Assembler,
and copy these to disk.

B. Copy a disk object file (machine-language program) onto tape in the
"SYSTEM" format.

Under TRSDOS READY, type TPSRC (ENTER). The program will start and ask you to
select either (1) source tape input or (2) object tape output.

Source Tape Input
If you type 1 (ENTER), the program will tell you to get the recorder ready. Get
your recorder ready to play the source tape (created by thew command of the
Tape Editor/Assembler). Then press (ENTER).

TPSRC will read the tape and create a disk file with the same name as the tape
and with the extension /SRC. The resultant file may be loaded by the Disk Editor/
Assembler (L command).

Object Tape Output
Ifyou type 2 (ENTER), the program will ask you for the name of the disk file.
(The file must be in the correct program format, as created by the Disk Editor/
Assembler A command.) Type in the file name and press (ENTER).

Next, TPSRC will prompt you to get the recorder ready. Using a blank tape,
prepare the recorder to record. Then press (ENTER). TPSRC will then write out the
object tape. The object tape will be given the name of the disk object file.

The resultant tape is in the SYSTEM format, and may be loaded according to the
instructions in Section 5.

APPENDIX

227

SERIES I EDITOR/ASSEMBLER

Appendix B/Model I Subroutines

These are subroutines which are in the Read Only Memory (ROM) of your Model
I Level I or Level II BASIC Computer. You can call them using an assembly
language program.

The left-hand column lists the subroutines. The next columns demonstrate
example assembly language programs which call these subroutines.

If you have a Model I disk system, you can also call subroutines which are a
part of your TRS-80 Disk Operating System (TRSDOS). These are listed in your
Model I ''TRSDOS Disk BASIC Reference Manual.''

The Model III BASIC subroutines are listed in the ''TRS-80 Model III Operation
and BASIC Language Reference Manual.'' (See the Appendix of the Operation
Section.) The Model III TRSDOS subroutines are in the "Technical Information"
of the "Model III Disk System's Owners Manual."

Level I BASIC Subroutines

KEYBOARD SCAN WAIT CALL 0B40H
A-register contains input JR Z ,WAIT
byte; input byte is displayed
at current cursor.

DISPLAY BYTE PUSH DE
AT CURSOR PUSH IY

LD A,20H
RST 10H
POP IY
POP DE

TURN ON CALL 0FE8H
CASSETTE

On board cassette is
turned on via remote plug

SAVE MEMORY CALL 0FE8H
TO CASSETTE LD HL,700H

Cassette is LD DE,7100H
turned off CALL 0F4BH

228

iSCAN
iZ= 1 IF KB CLEAR

iMUST SAVE
; DE & IY
iBYTE TO DISPLAY
iDISPLAY BYTE
iRESTORE
; DE & IY

iTURN ON CASSETTE

iTURN ON CASSETTE
iSTART ADDRESS
iLAST+l ADDRESS
iSAVE IT

APPENDIX

LOAD MEMORY FROM CALL 12lEF l!H iTURN ON & READ
CASSETTE

On return
HL = last + 1 address
z = 0 if

checksum error
z = 1 if

checksum OK
Cassette is
turned off

RETURN TO Press Reset
LEVEL I BASIC JP l1l iPOWER UP

JP 11l1C8H iRE-ENTRY WITH READY

Level II BASIC Subroutines

TURN ON CURSOR PUSH DE iMUST SAVE
CHARACTER PUSH IY ; DE & IY

LO A,11lEH il1lEH IS CURSOR BYTE
CALL 33H iDISPLAY ROUTINE
POP IY iRESTORE
POP DE ; DE & IY

KEYBOARD SCAN PUSH DE iMUST SAVE
A-register contains byte when PUSH IY ; DE & IY
loop falls through. AGN CALL 2BH iSCAN ROUTINE
Byte is not displayed on OR A iA=l1l IF KB CLEAR
Screen! JR Z,AGN iBRANCH IF NO BYTE

POP IY iRESTORE
POP DE ; DE & IY

DISPLAY BYTE PUSH DE iMUST SAVE
AT CURSOR PUSH IY ; DE & IY

LO A ,211lH iBYTE TO DISPLAY
CALL 33H iDISPLAY
POP IY iRESTORE
POP DE ; DE & IY

;A-REGISTER SPECIFIES CASSETTE (0 OR 1)
DEFINE DRIVE LO A ,Ill iON BOARD CASSETTE

CALL 1Zl212H iDEFINE DRIVE

WRITE LEADER CALL 0287H
AND SYNC BYTE

TURN OFF CASSETTE CALL 11l1FBH

229

SERIES I EDITOR/ASSEMBLER

SAVE MEMORY LD A ,Ill iON BOARD CASSETTE
TO CASSETTE CALL 0212H iDEF I NE DR I tJE

User must CALL 264H often CALL lll287H iWRITE LEADER
enough to keep up with 500 LD A ,ZlllH iBYTE TO RECORD
baud. Timing is automatic. CALL 0284H iOUTPUT BYTE

CALL lll1F8H iCASSETTE OFF

LOOK FOR LEADER CALL lll28GH
AND SYNC BYTE

LOAD MEMORY FROM LD A ,Ill iDEF I NE DR I tJE
CASSETTE CALL 0212H iFIND SYNC BYTE

Your program must CALL CALL lll28GH iREAD ONE BYTE
0235H often enough to keep CALL lll235H
up with 500 baud, and must
do its own checksum if
desired. A-register contains
byte read. The user must turn
off the cassette (CALL
01F8H) when all bytes have
been read.

RETURN TO Press RESET
LEVEL II BASIC JP Ill iLIKE POWER UP

JP 1A18H iRE-ENTRY

OUTPUT TO LINE PRINTER iPUT ASCII BYTE IN
(LEVEL II ONLY) iA-REGISTER AND CALL

PRTOUT
iBUSY CONDITION TES7
FOR

PRTOUT EX}(iSAlJE REGS,
LD HL,37E8H iLOAD LP POINTER

IN HL
PRTLPB LD D i<HL> iLOAD LP STATUS BYTE

BIT 7,D :IS THE PRINTER
JP NZ,PRTLPB BUSY?
LD <HU ,A
EXX iOUTPUT BYTE TO
RET PRINTER

230

Appendix C / Z-80 Status Indicators (Flags)
The flag register (F and F') supplies information to the user regarding the status
of the z-so at any given time. The bit positions for each flag are shown below:

7 6 5 4 3 2 1 0

slzlxlulxl~vlNlcl
WHERE:

C = CARRY FLAG
N = ADD/SUBTRACT FLAG
P/V = PARITY/OVERFLOW FLAG
H = HALF-CARRY FLAG
Z = ZERO FLAG
S = SIGN FLAG
X = NOT USED

Each of the two Z-80 Flag Registers contains 6 bits of status information which are
set or reset by CPU operations. (Bits 3 and 5 are not used.) Four of these bits are
testable (C,P/V,Z and s) for use with conditional jump, call or return instructions.
Two flags are not testable (H,N) and are used for BCD arithmetic.

Carry Flag (C)

The carry bit is set or reset depending on the operation begin performed. For 'ADD'
instructions that generate a carry and 'SUBTRACT' instructions that generate no bor
row, the Carry Flag will be set. The Carry Flag is reset by an ADD that does not
generate a carry and a 'SUBTRACT' that generates a borrow. This saved carry facil
itates software routines for extended precision arithmetic. Also, the 'DAA' instruc
tion will set the Carry Flag if the conditions for making the decimal adjustment
are met.

For instructions RLA, RRA, RLS and RRS, the carry bit is used as a link between the
LSB and MSB for any register or memory location. During instructions RLCA, RLC's
and SLA's, the carry contains the last value shifted out of bit 7 of any register or
memory location. During instructions RRCA, RRC's, SRA'S and SRL's the carry con
tains the last value shifted out of bit O of any register or memory location.

For the logical instructions AND's, OR'S and XOR's, the carry will be reset.

The Carry Flag can also be set (scF) and complemented (ccF).

Add/Subtract Flag (N)

This flag is used by the decimal adjust accumulator instruction (DAA) to distingiush
between 'ADD' and 'SUBTRACT, instructions. For all 'ADD' instructions, N will be
set to a 'o.' For all 'SUBTRACT' instructions, N will be set to a "1."

APPENDIX

231

SERIES I EDITOR/ASSEMBLER

Parity/Overflow Flag (P/V)

This flag is set to a particular state depending on the operation being performed.

For arithmetic operations, this flag indicates an overflow condition when the result
in the Accumulator is greater than the maximum possible number (+ 127) or is
less than the minimum possible number (-128). This overflow condition can be
determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause overflow. When add
ing operands with like signs and the result has a different sign, the overflow flag
is set. For example:

+ 120 = 0111 1000
+ 105 = 0110 1001
+ 225 1110 0001

ADDEND
AUGEND
(-95) SUM

The two numbers added together has resulted in a number that exceeds + 127 and
the two positive operands has resulted in a negative number (- 95) which is incor
rect. The overflow flag is therefore set.

For subtraction, overflow can occur for operands of unlike signs. Operands of like
sign will never cause overflow. For example:

+127 01111111
(-)-64 11000000

+191 10111111

MINUEND
SUBTRAHEND
DIFFERENCE

The minuend sign has changed from a positive to a negative, giving an incorrect
difference. Overflow is therefore set.

Another method for predicting an overflow is to observe the carry into and out of
the sign bit. If there is a carry in and no carry out, or if there is no carry in and a
carry out, then overflow has occurred.

This flag is also used with logical operations and rotate instructions to indicate the
parity of the result. The number of' 1' bits in a byte are counted. If the total is odd,
'ooo' parity (P = o) is flagged. If the total is even, 'EVEN' parity is flagged (P = 1).

During search instructions (CPI,CPIR,CPD,CPDR) and block transfer instructions
(LDI,LDIR,LDD,LDDR) the P/v flag monitors the state of the byte count register (Be).

When decrementing, the byte counter results in a zero value, the flag is reset to 0,
otherwise the flag is a Logic 1.

During LD A,I and LD A,R instructions, the P/v flag will be set with the contents of
the interrupt enable flip-flop (IFF2) for storage or testing.

When inputting a byte from an 1/0 device, IN r,(c), the flag will be adjusted to
indicate the parity of the data.

The Half Carry Flag (H)

The Half Carry Flag (H) will be set or reset depending on the carry and borrow
status between bits 3 and 4 of an 8-bit arithmetic operation. This flag is used by

232

the decimal adjust accumulator instruction (DAA) to correct the result of a packed
BCD add or subtract operation. The H flag will be set (1) or rest (o) according to the
following table:

H ADD SUBTRACT
1 There is a carry from There is no borrow from

Bit 3 to Bit 4 Bit4
0 There is no carry from There is a borrow from

Bit 3 to Bit 4 Bit4

The Zero Flag (Z)

The Zero Flag (z) is set or reset if the result generated by the execution of
certain instructions is a zero.

For 8-bit arithmetic and logical operations, the z flag will be set to a '1' if the
resulting byte in the Accumulator is zero. If the byte is not zero, the z flag is
reset to 'o.'

For compare (search) instructions, the z flag will be set to a '1' if a comparison
is found between the value in the Accumulator and the memory location pointed
to by the contents of the register pair HL.

When testing a bit in a register or memory location, the z flag will contain the
complemented state of the indicated bit (see Bit b,s).

When inputting or outputting a byte between a memory location and an IJO

device (INI;IND;OUTI and OUTD), if the result ofB-1 is zero, the z flag is set,
otherwise it is reset. Also for byte inputs from IJO devices using IN r,(c), the z
Flag is set to indicate a zero byte input.

The Sign Flag (S)

The Sign Flag (s) stores the state of the most significant bit of the Accumulator
(Bit 7). When the zso performs arithmetic operations on signed numbers, binary
two's complement notation is used to represent and process numeric
information. A positive number is identified by a 'o' in bit 7. A negative number
is identified by a '1 '. The binary equivalent of the magnitude of a positive
number is stored in bits O to 6 for a total range of from O to 127. A negative
number is represented by the two's complement of the equivalent positive
number. The total range for negative numbers is from -1 to -128.

When inputting a byte from a IJO device to a register, IN r,(c) the s flag will
indicate either positive (s = o) or negative (s = 1) data.

APPENDIX

233

SERIES I EDITOR/ASSEMBLER

AppendixD
Numeric List of Instruction Set

Following is a listing of object codes in numerical order in column two followed by the nmemonic or source
statement in column four.

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 00 l NOP 004E 35 54 DEC (HL)
0001 018405 2 LDBC.NN 004F 3620 55 LD (HL),N
0004 02 3 LD (BC),A 0051 37 56 SCF
0005 03 4 INC BC 0052 382E 57 JRC,DIS
0006 04 5 INCB 0054 39 58 ADDHL,SP
0007 05 6 DECB 0055 3A8405 59 LDA,(NN)
0008 0620 7 LDB,N 0058 3B 60 DEC SP
OOOA 07 8 RLCA 0059 3C 61 INCA
000B 08 9 EX AF,AF' 005A 3D 62 DECA
oooc 09 10 ADDHL,BC 005B 3E20 63 LDA,N
000D 0A 11 LD A,(BC) 005D 3F 64 CCF
OO0E OB 12 DEC BC 005E 40 65 LDB,B
OO0F oc 13 INCC 005F 41 66 LDB,C
0010 OD 14 DECC 0060 42 67 LDB,D
00ll 0E20 15 LDC,N 0061 43 68 LDB,E
0013 OF 16 RRCA 0062 44 69 LDB,H(NN)
0014 l02E 17 DJNZDIS 0063 45 70 LDB,L
0016 118405 18 LDDE,NN 0064 46 71 LDB,(HL)
0019 12 19 LD (DE),A 0065 47 72 LDB,A
OOIA 13 20 INC DE 0066 48 73 LDC,B
OOIB 14 21 INCD 0067 49 74 LDC,C
OO!C 15 22 DECD 0068 4A 75 LDC,D
OOID 1620 23 LDD,N 0069 4B 76 LDC,E
OOIF 17 24 RLA 006A 4C 77 LDC,H
0020 182E 25 JR DIS 006B 4D 78 LDC,L
0022 19 26 ADDHL,DE 006C 4E 79 LD C,(HL)
0023 IA 27 LDA,(DE) 006D 4F 80 LDC,A
0024 lB 28 DECDE 006E 50 81 LDD,B
0025 IC 29 INCE 006F 51 82 LDD,C
0026 ID 30 DECE 0070 52 83 LDD,D
0027 lE20 31 LDE,N 0071 53 84 LDD,E
0029 IF 32 RRA 0072 54 85 LDD,H
002A 202E 33 JR NZ,DIS 0073 55 86 LDD,L
002C 218405 34 LDHL,NN 0074 56 87 LDD,(HL)
002F 228405 35 LD (NN),HL 0075 57 88 LDD,A
0032 23 36 INCHL 0076 58 89 LDE,B
0033 24 37 INCH 0077 59 90 LDE,C
0034 25 38 DECH 0078 5A 91 LDE,D
0035 2620 39 LDH,N 0079 5B 92 LDE,E
0037 27 40 DAA 007A 5C 93 LDE,H
0038 282E 41 JR Z,DIS 007B 5D 94 LDE,L
003A 29 42 ADDHL,HL 007C 5E 95 LD E,(HL)
003B 2A8405 43 LDHL,(NN) 007D 5F 96 LDE,A
003E 2B 44 DECHL 007E 60 97 LDH,B
003F 2C 45 INCL 007F 61 98 LDH,C
0040 2D 46 DECL 0080 62 99 LDH,D
0041 2E20 47 LDL,N 0081 63 100 LDH,E
0043 2F 48 CPL 0082 64 101 LDH,H
0044 302E 49 JRNC,DIS 0083 65 102 LDH,L
0046 318405 50 LDSP,NN 0084 66 103 LDH,(HL)
0049 328405 51 LD(NN),A 0085 67 104 LDH,A
004C 33 52 INC SP 0086 68 105 LDL,B
004D 34 53 INC (HL) 0087 69 106 LDL,C

234

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0088 6A 107 LDL,D OOC5 A7 168 ANDA
0089 6B 108 LDL,E OOC6 AS 169 XORB
008A 6C 109 LDL,H OOC7 A9 170 XORC
008B 6D ll0 LDL,L OOC8 AA 171 XORD
008C 6E Ill LDL,(HL) OOC9 AB 172 XORE
008D 6F ll2 LDL,A OOCA AC 173 XORH
008E 70 113 LD (HL),B OOCB AD 174 XORL
008F 71 114 LD (HL),C oocc AE 175 XOR (HL)
0090 72 115 LD(HL),D OOCD AF 176 XORA
0091 73 116 LD (HL),E 0OCE BO 177 ORB
0092 74 117 LD (HL),H 00CF Bl 178 ORC
0093 75 118 LD (HL),L OOD0 B2 179 ORD
0094 76 ll9 HALT OODI B3 180 ORE
0095 77 120 LD(HL),A 0002 B4 181 ORH
0096 78 121 LDA,B OOD3 B5 182 ORL
0097 79 122 LDA,C OOD4 B6 183 OR (HL)
0098 7A 123 LDA,D OOD5 B7 184 ORA
0099 7B 124 LDA,E OOD6 BS 185 CPB
009A 7C 125 LDA,H OOD7 B9 186 CPC
009B 7D 126 LDA,L OOD8 BA 187 CPD
009C 7E 127 LDA,(HL) OOD9 BB 188 CPE
009D 7F 128 LDA,A 00DA BC 189 CPH
009E 80 129 ADDA,B 00DB BD 190 CPL
009F 81 130 ADDA,C 00DC BE 191 CP (HL)
OOA0 82 131 ADDA,D 00DD BF 192 CPA
OOAI 83 132 ADDA,E OODE co 193 RETNZ
OOA2 84 133 ADDA,H 00DF Cl 194 POP BC
OOA3 85 134 ADDA,L OOE0 C28405 195 JPNZ, NN
OOA4 86 135 ADDA,(HL) OOE3 C38405 196 JPNN
OOA5 87 136 ADDA,A OOE6 C48405 197 CALLNZ,NN
OOA6 88 137 ADCA,B OOE9 C5 198 PUSH BC
0OA7 89 138 ADCA,C OOEA C620 199 ADDA,N
OOA8 SA 139 ADCA,D OOEC C7 200 RST0
OOA9 SB 140 ADCA,E OOED cs 201 RETZ
OOAA SC 141 ADCA,H OOEE C9 202 RET
OOAB SD 142 ADCA,L OOEF CA8405 203 JPZ,NN
OOAC SE 143 ADCA,(HL) OOF2 CC8405 204 CALLZ,NN
OOAD SF 144 ADCA,A OOF5 CD8405 205 CALLNN
OOAE 90 145 SUB B OOF8 CE20 206 ADCA,N
OOAF 91 146 SUBC OOFA CF 207 RST8
OOB0 92 147 SUBD OOFB DO 208 RETNC
OOBI 93 148 SUBE OOFC DI 209 POP DE
OOB2 94 149 SUBH OOFD D28405 210 JPNC,NN
OOB3 95 150 SUBL 0100 D320 211 OUT ,NA
OOB4 96 151 SUB (HL) 0102 D48405 212 CALLNC,NN
OOB5 97 152 SUBA 0105 D5 213 PUSH DE
OOB6 98 153 SBCA,B 0106 D620 214 SUBN
OOB7 99 154 SBCA,C 0108 D7 215 RST JOH
OOB8 9A 155 SBCA,D 0109 D8 216 RETC
OOB9 9B 156 SBCA,E 010A D9 217 EXX
OOBA 9C 157 SBCA,H 010B DA8405 218 JPC,NN
OOBB 9D 158 SBCA,L 0lOE DB20 219 IN A,N
OOBC 9E 159 SBCA,(HL) 0110 DC8405 220 CALLC,NN
OOBD 9F 160 SBCA,A 0113 DE20 221 SBCA,N
OOBE AO 161 ANDB 0ll5 DF 222 RST 18H
OOBF Al 162 ANDC 0116 EO 223 RETPO
ooco A2 163 ANDD 0117 El 224 POPHL
OOCI A3 164 ANDE 0118 E28405 225 JPPO,NN
OOC2 A4 165 ANDH 0llB E3 226 EX (SP),HL
OOC3 AS 166 ANDL 0llC E48405 227 CALLPO,NN
OOC4 A6 167 AND (HL) 0llF ES 228 PUSHHL

SERIES I EDITOR/ASSEMBLER

LOC OBJ CODE STMT SOURCE STATEMENT
0120 E620 229 ANON
0122 E7 230 RST20H
0123 ES 231 RETPE
0124 E9 232 JP (HL)
0125 EA8405 233 JPPE,NN
0128 EB 234 EXDE,HL
0129 EC8405 235 CALLPE,NN
012C EE20 236 XORN
012E EF 237 RST28H
012F FO 238 RETP
0130 Fl 239 POP AF
0131 F28405 240 JPP,NN
0134 F3 241 DI
0135 F48405 242 CALLP,NN
0138 F5 243 PUSH AF
0139 F620 244 ORN
013B F7 245 RST 30H
013C F8 246 RETM
013D F9 247 LDSP,HL
013E FA8405 248 JPM,NN
0141 FB 249 EI
0142 FC8405 250 CALLM,NN
0145 FE20 251 CPN
0147 FF 252 RST 38H
0148 CB0O 253 RLCB
014A CBOl 254 RLCC
014C CB02 255 RLCD
014E CB03 256 RLCE
0150 CB04 257 RLCH
0152 CB05 258 RLCL
0154 CB06 259 RLC (HL)
0156 CB07 260 RLCA
0158 CB08 261 RRCB
015A CB09 262 RRCC
015C CBOA 263 RRCD
OISE CBOB 264 RRCE
0160 CBOC 265 RRCH
0162 CBOD 266 RRCL
0164 CBOE 267 RRC (HL)
0166 CBOF 268 RRCA
0168 CBIO 269 RLB
016A CBll 270 RLC
016C CB12 271 RLD
016E CB13 272 RLE
0170 CB14 273 RLH
0172 CB15 274 RLL
0174 CB16 275 RL (HL)
0176 CB17 276 RLA
0178 CB18 277 RRB
017A CB19 278 RRC
017C CBIA 279 RRD
017E CBIB 280 RRE
0180 CBIC 281 RRH
0182 CBID 282 RRL
0184 CBIE 283 RR (HL)
0186 CBIF 284 RRA
0188 CB20 285 SLAB
018A CB21 286 SLAC
018C CB22 287 SLAD
OISE CB23 288 SLAE
0190 CB24 289 SLAH

236

\

' \

LOC
0192
0194
0196
0198
019A
019C
019E
0lA0
OIA2
0IA4
01A6
0IAS
0lAA
0IAC
0IAE
0IB0
0IB2
0IB4
0IB6
0IBS
0IBA
0IBC
0IBE
0IC0
0IC2
01C4
OIC6
OICS
0ICA
01cc
0lCE
OIDO
0ID2
01D4
01D6
oms
0IDA
0IDC
0IDE
0IE0
0IE2
0IE4
0IE6
0IES
0IEA
0IEC
0IEE
0lF0
0IF2
0IF4
0IF6
0IFS
0IFA
0IFC
0IFE
0200
0202
0204
0206
0208
020A

OBJ CODE
CB25
CB26
CB27
CB28
CB29
CB2A
CB2B
CB2C
CB2D
CB2E
CB2F
CB38
CB39
CB3A
CB3B
CB3C
CB3D
CB3E
CB3F
CB40
CB41
CB42
CB43
CB44
CB45
CB46
CB47
CB48
CB49
CB4A
CB4B
CB4C
CB4D
CB4E
CB4F
CB50
CB51
CB52
CB53
CB54
CB55
CB56
CB57
CB58
CB59
CB5A
CB5B
CB5C
CB5D
CB5E
CB5F
CB60
CB61
CB62
CB63
CB64
CB65
CB66
CB67
CB68
CB69

STMT SOURCE STATEMENT
290 SLAL
291 SLA (HL)
292 SLAA
293 SRAB
294 SRAC
295 SRAD
296 SRAE
297 SRAH
298 SRAL
299 SRA(HL)
300 SRAA
301 SRLB
302 SRLC
303 SRLD
304 SRLE
305 SRLH
306 SRLL
307 SRL(HL)
308 SRLA
309 BIT 0,B
310 BIT0,C
311 BIT0,D
312 BIT0,E
313 BIT0,H
314 BIT0,L
315 BITQ,(IIL)
316 BIT0,A
317 BIT 1,B
318 BIT 1,C
319 BIT 1,D
320 BIT l,E
321 BIT 1,H
322 BIT l,L
323 BIT 1,(HL)
324 BIT 1,A
325 BIT 2,B
326 BIT 2,C
327 BIT2,D
328 BIT 2,E
329 BIT 2,H
330 BIT 2,L
331 BIT2,(HL)
332 BIT2,A
333 BIT 3,B
334 BIT3,C
335 BIT 3,D
336 BIT 3,E
337 BIT 3,H
338 BIT 3,L
339 BIT 3,(HL)
340 BIT 3,A
341 BIT4,B
342 BIT4,C
343 BIT4,D
344 BIT4,E
345 BIT4,H
346 BIT4,L
347 BIT4,(HL)
348 BIT4,A
349 BIT 5,B
350 BIT 5,C

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
020C CB6A 351 BIT 5,D 0286 CBA7 412 RES 4,A
020E CB6B 352 BIT 5,E 0288 CBA8 413 RES 5,B
0210 CB6C 353 BIT 5,H 028A CBA9 414 RES 5,C
0212 CB6D 354 BIT 5,L 028C CBAA 415 RES 5,D
0214 CB6E 355 BIT 5,(HL) 028E CBAB 416 RES 5,E
0216 CB6F 356 BIT 5,A 0290 CBAC 417 RES 5,H
0218 CB70 357 BIT6,B 0292 CBAD 418 RES 5,L
021A CB71 358 BIT6,C 0294 CBAE 419 RES 5,(HL)
021C CB72 359 BIT6,D 0296 CBAF 420 RES 5,A
021E CB73 360 BIT 6,E 0298 CBB0 421 RES 6,B
0220 CB74 361 BIT 6,H 029A CBBI 422 RES 6,C
0222 CB75 362 BIT6,L 029C CBB2 423 RES 6,D
0224 CB76 363 BIT 6,(HL) 029E CBB3 424 RES 6,E
0226 CB77 364 BIT6,A 02A0 CBB4 425 RES6,H
0228 CB78 365 BIT 7,B 02A2 CBB5 426 RES 6,L
022A CB79 366 BIT 7,C 02A4 CBB6 427 RES 6,(HL)
022C CB7A 367 BIT7,D 02A6 CBB7 428 RES 6,A
022E CB7B 368 BIT 7,E 02A8 CBB8 429 RES 7,B
0230 CB7C 369 BIT 7,H 02AA CBB9 430 RES 7,C
0232 CB7D 370 BIT 7,L 02AC CBBA 431 RES7,D
0234 CB7E 371 BIT 7,(HL) 02AE CBBB 432 RES 7,E
0236 CB7F 372 BIT7,A 0280 CBBC 433 RES7,H
0238 CB80 373 RES 0,B 0282 CBBD 434 RES 7,L
023A CB81 374 RES 0,C 0284 CBBE 435 RES 7,(HL)
023C CB82 375 RES0,D 0286 CBBF 436 RES 7,A
023E CB83 376 RES 0,E 0288 CBC0 437 SET0,B
0240 CB84 377 RES0,H 02BA CBC! 438 SET0,C
0242 CB85 378 RES 0,L 02BC CBC2 439 SET0,D
0244 CB86 379 RES 0,(HL) 02BE CBC3 440 SET0,E
0246 CB87 380 RES0,A 02C0 CBC4 441 SET0,H
0248 CB88 381 RES l,B 02C2 CBC5 442 SET0,L
024A CB89 382 RES 1,C 02C4 CBC6 443 SET0,(HL)
024C CB8A 383 RES 1,D 02C6 CBC? 444 SET0,A
024E CB8B 384 RES 1,E 02C8 CBC8 445 SET 1,B
0250 CB8C 385 RES 1,H 02CA CBC9 446 SET 1,C
0252 CB8D 386 RES 1,L 02cc CBCA 447 SETl,D
0254 CB8E 387 RES l,(HL) 02CE CBCB 448 SET 1,E
0256 CB8F 388 RES 1,A 02DO CBCC 449 SET 1,H
0258 CB90 389 RES 2,B 02D2 CBCD 450 SET l,L
025A CB91 390 RES 2,C 02D4 CBCE 451 SET 1,(HL)
025C CB92 391 RES 2,D 0206 CBCF 452 SET 1,A
025E CB93 392 RES 2,E 02D8 CBDO 453 SET2,B
0260 CB94 393 RES 2,H 02DA CBDl 454 SET2,C
0262 CB95 394 RES 2,L 02DC CBD2 455 SET2,D
0264 CB96 395 RES2,(HL) 02DE CBD3 456 SET2,E
0266 CB97 396 RES 2,A 02E0 CBD4 457 SET2,H
0268 CB98 397 RES 3,B 02E2 CBD5 458 SET2,L
026A CB99 398 RES 3,C 02E4 CBD6 459 SET2,(HL)
026C CB9A 399 RES 3,D 02E6 CBD7 460 SET2,A
026E CB9B 400 RES 3,E 02E8 CBD8 461 SET3,B
0270 CB9C 401 RES 3,H 02EA CBD9 462 SET 3,C
0272 CB9D 402 RES 3,L 02EC CBDA 463 SET 3,D
0274 CB9E 403 RES 3,(HL) 02EE CBDB 464 SET3,E
0276 CB9F 404 RES 3,A 02F0 CBDC 465 SET 3,H
0278 CBA0 405 RES 4,B 02F2 CBDD 466 SET 3,L
027A CBAl 406 RES 4,C 02F4 CBDE 467 SET 3,(HL)
027C CBA2 407 RES4,D 02F6 CBDF 468 SET 3,A
027E CBA3 408 RES 4,E 02F8 CBEO 469 SET4,B
0280 CBA4 409 RES4,H 02FA CBEl 470 SET4,C
0282 CBA5 410 RES 4,L 02FC CBE2 471 SET4,D
0284 CBA6 411 RES 4,(HL) 02FE CBE3 472 SET4,E

237

SERIES I EDITOR/ASSEMBLER

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0300 CBE4 473 SET4,H 0399 DDBE05 534 CP (IX+IND)
0302 CBE5 474 SET4,L 039C DDEI 535 POPIX
0304 CBE6 475 SET4,(HL) 039E DDE3 536 EX (SP),IX
0306 CBE7 476 SET4,A 03AO DDE5 537 PUSHIX
0308 CBE8 477 SET 5,B 03A2 DDE9 538 JP (IX)
030A CBE9 478 SET 5,C 03A4 DDF9 539 LO SP,IX
030C CBEA 479 SET 5,D 03A6 DDCB0506 540 RLC (IX+ IND)
030E CBEB 480 SET 5,E 03AA DDCB050E 541 RRC (IX+ IND)
0310 CBEC 481 SET 5,H 03AE DDCB0516 542 RL (IX+ IND)
0312 CBED 482 SET 5,L 03B2 DDCB051E 543 RR(IX+IND)
0314 CBEE 483 SET 5,(HL) 03B6 DDCB0526 544 SLA (IX+ IND)
0316· CBEF 484 SET 5,A 03BA DDCB052E 545 SRA (IX+ IND)
0318 CBFO 485 SET 6,B 03BE DDCB053E 546 SRL (IX+ IND)
031A CBFI 486 SET6,C 03C2 DDCB0546 547 BIT 0,(IX + IND)
03!C CBF2 487 SET 6,D 03C6 DDCB054E 548 BIT !,(IX+ IND)
031E CBF3 488 SET 6,E 03CA DDCB0556 549 BIT 2,(IX + IND)
0320 CBF4 489 SET6,H 03CE DDCB055E 550 BIT 3,(IX + IND)
0322 CBF5 490 SET6,L 03D2 DDCB0566 551 BIT 4,(IX + IND)
0324 CBF6 491 SET 6,(HL) 03D6 DDCB056E 552 BIT 5,(IX + IND)
0326 CBF7 492 SET 6,A 03DA DDCB0576 553 BIT 6,(IX + IND)
0328 CBF8 493 SET7,B 03DE DDCB057E 554 BIT 7,(IX + IND)
032A CBF9 494 SET7,C 03E2 DDCB0586 555 RES 0,(IX + IND)
032C CBFA 495 SET 7,D 03E6 DDCB058E 556 RES I ,(IX+ IND)
032E CBFB 496 SET7,E 03EA DDCB0596 557 RES 2,(IX + IND)
0330 CBFC 497 SET7,H 03EE DDCB059E 558 RES 3,(IX + IND)
0332 CBFD 498 SET 7,L 03F2 DDCB05A6 559 RES 4,(IX + IND)
0334 CBFE 499 SET7,(HL) 03F6 DDCB05AE 560 RES 5,(IX + IND)
0336 CBFF 500 SET7,A 03FA DDCB05B6 561 RES 6,(IX + IND)
0338 DD09 501 ADDIX,BC 03FE DDCB05BE 562 RES 7,(IX + IND)
033A DD19 502 ADDIX,DE 0402 DDCB05C6 563 SET 0,(IX + IND)
033C DD218405 503 LDIX,NN 0406 DDCB05CE 564 SET I ,(IX+ IND)
0340 DD228405 504 LD (NN),IX 040A DDCB05D6 565 SET 2,(IX + IND)
0344 DD23 505 INC IX 040E DDCB05DE 566 SET 3,(IX + IND)
0346 DD29 506 ADDIX,IX 0412 DDCB05E6 567 SET 4,(IX + IND)
0348 DD2A8405 507 LD IX,(NN) 0416 DDCB05EE 568 SET 5,(IX + IND)
034C DD2B 508 DEC IX 041A DDCB05F6 569 SET 6,(IX + IND)
034E DD3405 509 INC (IX+ IND) 04IE DDCB05FE 570 SET 7,(IX + IND)
0351 D03505 510 DEC (IX+ IND) 0422 ED40 571 INB,(C)
0354 0D360520 511 LO (IX+ IND),N 0424 ED41 572 OUT(C),B
0358 0D39 512 ADDIX,SP 0426 ED42 573 SBCHL,BC
035A D04605 513 LO B,(IX + IND) 0428 ED438405 574 LO(NN),BC
035D DD4E05 514 LO C,(IX + IND) 042C ED44 575 NEG
0360 D05605 515 LO D,(IX + IND) 042E ED45 576 REIN
0363 DD5E05 516 LO E,(IX + IND) 0430 ED46 577 IMO
0366 D06605 517 LO H,(IX + IND) 0432 ED47 578 LOI,A

0369 DD6E05 518 LO L,(IX + IND) 0434 ED48 579 INC,(C)

036C D07005 519 LO (IX+ IND),B 0436 ED49 580 OUT(C),C

036F D07105 520 LO (IX+ IND),C 0438 ED4A 581 ADCHL,BC

0372 D07205 521 LO (IX+ IND),D 043A ED4B8405 582 LOBC,(NN)

0375 D07305 522 LO (IX+ IND),E 043E ED4D 583 RETI
ED4F LOR,A

0378 D07405 523 LO (IX+ IND),H ED5F LOA,R
037B D07505 524 LO (IX+ IND),L 0440 ED50 584 IND,(C)
037E D07705 525 LO (IX+ IND),A 0442 ED51 585 OUT(C),D
0381 DD7E05 526 LO A,(IX + IND) 0444 ED52 586 SBCHL,DE
0384 D08605 527 ADD A,(IX + IND) 0446 ED538405 587 LO(NN),DE
0387 DD8E05 528 ADC A,(IX + IND) 044A ED56 588 !MI
038A D09605 529 SUB (IX+ IND) 044C ED57 589 LOA,I
038D DD9E05 530 SBC A,(IX + IND) 044E ED58 590 INE,(C)
0390 DDA605 531 AND (IX+ IND) 0450 ED59 591 OUT(C),E
0393 DDAE05 532 XOR (IX+ IND) 0452 ED5A 592 ADCHL,DE
0396 DDB605 533 OR(IX+IND) 0454 ED5B8405 593 LODE,(NN)

2J8

APPENDIX

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
045A ED60 595 IN H,(C) 040D FD7505 648 LD (IY + IND),L
045C ED61 596 OUT(C),H 04E0 F07705 649 LD (IY + IND),A
045E ED62 597 SBCHL,HL 04E3 F07E05 650 LD A,(IY + IND)
0460 ED67 598 RRD 04E6 F08605 651 ADD A,(IY + IND)
0462 ED68 599 INL,(C) 04E9 F08E05 652 ADC A,(IY + IND)
0464 ED69 600 OUT(C),L 04EC F09605 653 SUB-(IY + IND)
0466 ED6A 601 ADCHL,HL 04EF F09E05 654 SBC A,(IY + IND)
0468 ED6F 602 RLD 04F2 FOA605 655 AND (IY + IND)
046A ED72 603 SBCHL,SP 04F5 FOAE05 656 XOR (IY + IND)
046C ED738405 604 LD(NN),SP 04F8 FOB605 657 OR(IY+IND)
0470 ED78 605 INA,(C) 04FB FOBE05 658 CP(IY +IND)
0472 ED79 606 OUT(C),A 04FE FOE! 659 POPIY
0474 ED7A 607 ADCHL,SP 0500 FOE3 660 EX (SP),IY
0476 ED7B8405 608 LDSP,(NN) 0502 FOES 661 PUSHIY
047A EDA0 609 LOI 0504 FOE9 662 JP (IY)
047C EDA! 610 CPI 0506 FOF9 663 LDSP,IY
047E EDA2 611 !NI 0508 FOCB0506 664 RLC (IY + IND)
0480 EDA3 612 OUT! 050C FOCB050E 665 RRC (IY + IND)
0482 EDA8 613 LDD 0510 FOCB0516 666 RL (IY + IND)
0484 EDA9 614 CPD 0514 FOCB051E 667 RR(IY+IND)
0486 EDAA 615 IND 0518 FOCB0526 668 SLA (IY + IND)
0488 EDAB 616 OUTD 051C FOCB052E 669 SRA (IY + IND)
048A EDB0 617 LDIR 0520 FOCB053E 670 SRL (IY + IND)
048C EDBI 618 CPIR 0524 FOCB0546 671 BIT 0,(IY + IND)
048E EDB2 619 INIR 0528 FDCB054E 672 BIT 1,(IY + IND)
0490 EDB3 620 OTIR 052C FDCB0556 673 BIT 2,(IY + IND)
0492 EDB8 621 LDDR 0530 FDCB055E 674 , BIT 3,(IY + IND)
0494 EDB9 622 CPDR 0534 FDCB0566 675 BIT 4,(IY + IND)
0496 EDBA 623 INDR 0538 FDCB056E 676 BIT 5,(IY + IND)
0498 EDBB 624 OTDR 053C FDCB0576 677 BIT 6,(IY + IND)
049A FD09 625 ADDIY,BC 0540 FDCB057E 678 BIT 7 ,(IY + IND)
049C FDl9 626 ADDIY,DE 0544 FDCB0586 679 RES 0,(IY + IND)
049E FD218405 627 LDIY,NN 0548 FDCB058E 680 RES I ,(IY + IND)
04A2 FD228405 628 LD(NN),IY 054C FDCB0596 681 RES 2,(IY + IND)
04A6 FD23 629 INCIY 0550 FDCB059E 682 RES 3,(IY + IND)
04A8 FD29 630 ADDIY,IY 0554 FDCB05A6 683 RES 4,(IY + IND)
04AA FD2A8405 631 LDIY,(NN) 0558 FDCB05AE 684 RES 5,(IY + IND)
04AE FD2B 632 DECIY 055C FOCB05B6 685 RES 6,(IY + IND)
04B0 FD3405 633 INC (IY + IND) 0560 FDCB05BE 686 RES 7,(IY + IND)
04B3 FD3505 634 DEC (IY + IND) 0564 FDCB05C6 687 SET 0,(IY + IND)
04B6 FD360520 635 LD (IY + IND),N 0568 FDCB05CE 688 SET I ,(IY + IND)
04BA FD39 636 ADDIY,SP 056C FOCB05D6 689 SET 2,(IY + IND)
04BC FD4605 637 LD B,(IY + IND) 0570 FOCB05DE 690 SET 3,(IY + IND)
04BF FD3E05 638 LD C,(IY + IND) 0574 FOCB05E6 691 SET 4,(IY + IND)
04C2 FD5605 639 LD D,(IY + IND) 0578 FDCB05EE 692 SET 5,(IY + IND)
04C5 FD5E05 640 LD E,(IY + IND) 057C FDCB05F6 693 SET 6,(IY + IND)
04C8 FD6605 641 LD H,(IY + IND) 0580 FDCB05FE 694 SET 7 ,(IY + IND)
04CB FD6E05 642 LD L,(IY + IND) 0584 695NN DEFS2
04CE FD7005 643 LD (IY + IND),B 696IND EQU5
04Dl FD7105 644 LD (IY + IND),C 697M EQU JOH
04D4 FD7205 645 LD(IY + IND),D 698N EQU20H
04D7 FD7305 646 LD (IY + IND),E 699 DIS EQU30H
04DA FD7405 647 LD (IY + IND),H 700 END

SERIES I EDITOR/ASSEMBLER

Appendix E/ Alphabetic List of Instruction Set
Following is an alphabetical listing of the nmemonic or source statement in column four. The object code is
shown in column two.

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 SE 1 ADC A,(HL) 005C CB42 56 BIT O,D
0001 DD8E05 2 ADC A,(IX+IND) 005E CB43 57 BIT O,E
0004 FD8E05 3 ADC A,(IY+IND) 0060 CB44 58 BIT O,H
0007 SF 4 ADC A,A 0062 CB45 59 BIT O,L
0008 88 5 ADC A,B 0064 CB4E 60 BIT l,(HL)
0009 89 6 ADC A,C 0066 DDCB054E 61 BIT 1,(IX+IND)
OOOA SA 7 ADC A,D 006A FDCB054E 62 BIT 1,(IY+IND)
OOOB SB 8 ADC A,E 006E CB4F 63 BIT 1,A
oooc SC 9 ADC A,H. 0070 CB48 64 BIT 1,B
OOOD SD 10 ADC A,L 0072 CB49 65 BIT 1,C
OOOE CE20 11 ADC A,N 0074 CB4A 66 BIT l.D
0010 ED4A 12 ADC HL,BC 0076 CB4B 67 BIT 1,E
0012 ED5A 13 ADC HL,DE 0078 CB4C 68 BIT 1,H
0014 ED6A 14 ADC HL,HL 007A CB4D 69 BIT 1,L
0016 ED7A 15 ADC HL,SP 007C CB56 70 BIT 2,(HL)
0018 86 16 ADD A,(HL) 007E DDCB0556 71 BIT 2,(IX+IND)
0019 DD8605 17 ADD A,(IX+IND) 0082 FDCB0556 72 BIT 2,(IY +IND)
OOlC FD8605 18 ADD A,(IY+IND) 0086 CB57 73 BIT 2,A
OOlF 87 19 ADD A,A 0088 CB50 74 BIT 2,B
0020 80 20 ADD A,B 008A CB51 75 BIT 2,C
0021 81 21 ADD A,C 008C CB52 76 BIT 2,D
0022 82 22 ADD A,D 008E CB53 77 BIT 2,E
0023 83 23 ADD A,E 0090 CB54 78 BIT 2,H
0024 84 24 ADD A,H 0092 CB55 79 BIT 2,L
0025 85 25 ADD A,L 0094 CB5E 80 BIT 3,(HL)
0026 C620 26 ADD A,N 0096 DDCB055E 81 BIT 3,(IX+IND)
0028 09 27 ADD HL,BC 009A FDCB055E 82 BIT 3,(IY +IND)
0029 19 28 ADD HL,DE 009E CB5F 83 BIT 3,A
002A 29 29 ADD HL,HL OOAO CB58 84 BIT 3,B
002B 39 30 ADD HL,SP OOA2 CB59 85 BIT 3,C
002C DD09 31 ADD IX,BC OOA4 CB5A 86 BIT 3,D
002E DD19 32 ADD IX,DE OOA6 CB5B 87 BIT 3,E
0030 DD29 33 ADD IX,IX OOA8 CB5C 88 BIT 3,H
0032 DD39 34 ADD IX,SP OOAA CB5D 89 BIT 3,L
0034 FD09 35 ADD IY,BC OOAC CB66 90 BIT 4,(HL)
0036 FD19 36 ADD IY,DE OOAE DDCB0566 91 BIT 4,(IX+IND)
0038 FD29 37 ADD IY,IY OOB2 FDCB0566 92 BIT 4,(IY+IND)
003A FD39 38 ADD IY,SP OOB6 CB67 93 BIT 4,A
003C A6 39 AND (HL) OOB8 CB60 94 BIT 4,B
003D DDA605 40 AND (IX+IND) OOBA CB61 95 BIT 4,C
0040 FDA605 41 AND (IY+IND) OOBC CB62 % BIT 4,D
0043 A7 42 AND A OOBE CB63 97 BIT 4,E
0044 AO 43 AND B ooco CB64 98 BIT 4,H
0045 Al 44 AND C OOC2 CB65 99 BIT 4,L
0046 A2 45 AND D OOC4 CB6E 100 BIT 5,(HL)
0047 A3 46 AND E OOC6 DDCB056E IOI BIT 5,(IX+IND)
0048 A4 47 AND H OOCA FDCB056E 102 BIT 5,(IY +IND)
0049 A5 48 AND L OOCE CB6F 103 BIT 5,A
004A E620 49 AND N 00DO CB68 104 BIT 5,B
004C CB46 50 BIT 0,(HL) OOD2 CB69 105 BIT 5,C
004E DDCB0546 51 BIT 0,(IX+IND) 00D4 CB6A 106 BIT 5,D
0052 FDBC0546 52 BIT 0,(IY +IND) 00D6 CB6B 107 BIT 5,E
0056 CB47 53 BIT O,A OOD8 CB6C 108 BIT 5,H
0058 CB40 54 BIT O,B OODA CB6D 109 BIT 5,L
005A CB41 55 BIT o,c OODC CB76 110 BIT 6,(HL)

240

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
OODE DDCB0576 111 BIT 6,(IX+IND) 0157 38 172 DEC SP
OOE2 FDCB0576 112 BIT 6,(IY +IND) 0158 F3 173 DI
OOE6 CB77 113 BIT 6,A 0159 102E 174 DJNZ DIS
OOE8 CB70 114 BIT 6,8 0158 FB 175 EI
OOEA CB71 115 BIT 6,C 015C E3 176 EX (SP),HL
OOEC CB72 116 BIT 6,D 015D DDE3 177 EX (SP),IX
OOEE CB73 117 BIT 6,E 015F FDE3 178 EX (SP),IY
OOFO CB74 118 BIT 6,H 0161 08 179 EX AF,AF'
OOF2 CB75 119 BIT 6,L 0162 EB 180 EX DE,HL
OOF4 CB7E 120 BIT 7,(HL) 0163 D9 181 EXX
OOF6 DDCB057E 121 BIT 7,(IX+IND) 0164 76 182 HALT
OOFA FDCB057E 122 BIT 7,(IY +IND) 0165 ED46 183 IM 0
OOFE CB7F 123 BIT 7,A 0167 ED56 184 IM I
0100 CB78 124 BIT 7,B 0169 ED5E 185 IM 2
0102 CB79 125 BIT 7,C . 016B ED78 186 IN A,(C)
0104 CB7A 126 BIT 7,D 016D DB20 187 IN A,N
0106 CB7B 127 BIT 7,E 016F ED40 188 IN B,(C)
0108 CB7C 128 BIT 7,H 0171 ED48 189 IN C,(C)
010A CB7D 129 BIT 7,L 0173 ED50 190 IN D,(C)
OlOC DC8405 130 CALL C,NN 0175 ED58 191 IN E,(C)
OIOF FC8405 131 CALL M,NN 0177 ED60 192 IN H,(C)
0112 D48405 132 CALL NC,NN 0179 ED68 193 IN L,(C)
0115 CD8405 133 CALL NN 017B 34 194 INC (HL)
0118 C48405 134 CALL NZ,NN 017C D03405 195 INC (IX+IND)
OIIB F48405 135 CALL P,NN 017F FD3405 196 INC (IY+IND)
OllE EC8405 136 CALL PE,NN 0182 3C 197 INC A
0121 E48405 137 CALL PO,NN 0183 04 198 INC B
0124 CC8405 138 CALL Z,NN 0184 03 199 INC BC
0127 3F 139 CCF 0185 oc 200 INC C
0128 BE 140 CP (HL) 0186 14 201 INC D
0129 DDBE05 141 CP (IX+IND) 0187 13 202 INC DE
012C FDBE05 142 CP (IY+IND) 0188 IC 203 INC E
012F BF 143 CP A 0189 24 204 INC H
0130 B8 144 CP B 018A 23 205 INC HL
0131 B9 145 CP C 018B D023 206 INC IX
0132 BA 146 CP D 018D FD23 207 INC IY
0133 BB 147 CP E 018F 2C 208 INC L
0134 BC 148 CP H 0190 33 209 INC SP
0135 BO 149 CP L 0191 EDAA 210 IND
0136 FE20 150 CP N 0193 EDBA 211 !NOR
0138 EDA9 151 CPD 0195 EDA2 212 IN!
013A EDB9 152 CPDR 0197 EDB2 213 INIR
013C EDA! 153 CPI 0199 E9 214 JP (HL)
0!3E EDBI 154 CPIR 019A DDE9 215 JP (IX)
0140 2F 155 CPL 019C FDE9 216 JP (IY)
0141 27 156 DAA 019E DA8405 217 JP C,NN
0142 35 157 DEC (HL) OJAI FA8405 218 JP M,NN
0143 D03505 158 DEC (IX+IND) OIA4 D28405 219 JP NC,NN
0146 FD3505 159 DEC (IY+IND) OIA7 C38405 220 JP NN
0149 3D 160 DEC A OIAA C28405 221 JP NZ,NN
014A 05 161 DEC B OlAD F28405 222 JP P,NN
0148 OB 162 DEC BC OIBO EA8405 223 JP PE,NN
014C OD 163 DEC C OIB3 E28405 224 JP PO,NN
014D 15 164 DEC D 0IB6 CA8405 225 JP Z,NN
014E 1B 165 DEC DE 0IB9 382E 226 JR C,DIS
014F ID 166 DEC E OIBB 182E 227 JR DIS
0150 25 167 DEC H OIBD 302E 228 JR NC,DIS
0151 28 168 DEC HL OIBF 202E 229 JR NZ,DIS
0152 DD2B 169 DEC IX OICI 282E 230 JR Z,DIS
0154 FD2B 170 DEC IY 01C3 02 231 LO (BC),A
0156 2D 171 DEC L OIC4 12 232 LO (DE},A

241

SERIES I EDITOR/ASSEMBLER

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJCODE STMT SOURCE STATEMENT
01C5 77 233 LO (HL),A 024C FD4E05 294 LO C,(IY+IND)
01C6 70 234 LO (HL),B 024F 4F 295 LO C,A
01C7 71 235 LO (HL),C 0250 48 296 LD C,B
01C8 72 236 LO (HL),D 0251 49 297 LO c,c
01C9 73 237 LO (HL),E 0252 4A 298 LO C,D
OlCA 74 238 LO (HL),H 0253 4B 299 LO C,E
OlCB 75 239 LO (HL),L 0254 4C 300 LO C,H
OlCC 3620 240 LO (HL),N 0255 4D 301 LO C,L
OlCE D07705 241 LO (IX+IND),A 0256 OE20 302 LD C,N
O!Dl D07005 242 LO (IX+IND),B 0258 56 303 LO D,(HL)
OID4 D07105 243 LO (IX+IND),C 0259 D05605 304 LD D,(IX+IND)
OID7 D07205 244 LD (IX+IND),,D 025C FD5605 305 LO D,(IY+IND)
OIDA D07305 245 LO (IX+IND),E 025F 57 306 LO D,A
OIDD D07405 246 LD (IX+IND),H 0260 50 307 LD D,B
OlEO D07505 247 LO (IX+IND),L 0261 51 308 LO D,C
01E3 0D360520 248 LO (IX+IND),N 0262 52 309 LO D,D
OIE7 FD7705 249 LO (IY+IND),A 0263 53 310 LO D,E
OIEA FD7005 250 LO (IY+IND),B 0264 54 311 LO D,H
OlED FD7105 251 LO (IY+IND),C 0265 55 312 LO D,L
OlFO FD7205 252 LO (IY+IND),D 0266 1620 313 LO D,N
OIF3 FD7305 253 LO (IY+IND),E 0268 ED5B8405 314 LO DE,(NN)
01F6 FD7405 254 LO (IY+IND),H 026C 118405 315 LO DE,NN
OIF9 FD7505 255 LO (IY+IND),L 026F 5E 316 LD E,(HLJ
OIFC FD360520 256 LO (IY+IND),N 0270 DD5E05 317 LO E,(IX+IND)
0200 328405 257 LO (NN),A 0273 FD5E05 318 LO E,(IY+IND)
0203 ED438405 258 LO (NN),BC 0276 5F 319 LO E,A
0207 ED538405 259 LO (NN),DE 0277 58 320 LO E,B
020B 228405 260 LO (NN),HL 0278 59 321 LO E,C
020E 0D228405 261 LO (NN),IX 0279 5A 322 LO E,D
0202 FD228405 262 LO (NN),IY 027A 5B 323 LO E,E
0216 ED738405 263 LO (NN),SP 027B 5C 324 LO E,H
021A OA 264 LO A,(BC) 027C 5D 325 LO E,L
021B IA 265 LO A,(DE) 0270 1E20 326 LO E,N
021C 7E 266 LO A,(HL) 027F 66 327 LO H,(HL)
021D DD7E05 267 LO A,(IX+IND) 0280 D06605 328 LO H,(IX+IND)
0220 FD7E05 268 LO A,(IY+IND) 0283 FD6605 329 LO H,(IY+IND)
0223 3A8405 269 LO A,(NN) 0286 67 330 LD H,A
0226 7F 270 LO A,A 0287 60 331 LO H,B
0227 78 271 LO A,B 0288 61 332 LD H,C
0228 79 272 LO A,C 0289 62 333 LO H,D
0229 7A 273 LO A,D 028A 63 334 LO H,E
022A 7B 274 LO A,E 028B 64 335 LO H,H
022B 7C 275 LO A,H 028C 65 336 LO H,L
022C ED57 276 LO A,! 028D 2620 337 LD H,N
022E 7D 277 LO A,L 028F 2A8405 338 LO HL,(NN)
022F 3E20 278 LD A,N 0292 218405 339 LO HL,NN
0231 46 279 LO B,(HL) 0295 ED47 340 LO !,A
0232 D04605 280 LO B,(IX+IND) 0297 DD2A8405 341 LD IX,(NN)
0235 FD4605 281 LO B,(IY +IND) 029B DD218405 342 LO IX,NN
0238 47 282 LO B,A 029F FD2A8405 343 LO IY,(NN)
0239 40 283 LO B,B 02A3 FD218405 344 LO IY,NN
023A 41 284 LO B,C 02A7 6E 345 LD L,(HL)
023B 42 285 LO B,D 02A8 DD6E05 346 LO L,(IX+IND)
023C 43 286 LO B,E 02AB FD6E05 347 LO L,(IY+IND)
023D 44 287 LD B,H 02AE 6F 348 LD L,A
023E 45 288 LO B,L 02AF 68 349 LO L,B
023F 0620 289 LO B,N 02B0 69 350 LO L,C
0241 ED4B8405 290 LO BC,(NN) 02B1 6A 351 LO L,D
0245 018405 291 LO BC,NN 02B2 6B 352 LO L,E
0248 4E 292 LO C,(HL) 02B3 6C 353 LO L,H
0249 DD4E05 293 LO C,(IX+IND) 02B4 6D 354 LO L,L

242

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT

02B4 6D 354 LD L,L 0324 FDCB058E 414 RES 1,(IY+IND)
02B5 2E20 355 LD L,N 0328 CB8F 415 RES 1,A

-
ED4F LD R,A 032A CB88 416 RES l,B

02B7 ED7B8405 356 LD SP,(NN) 032C CB89 417 RES 1,C
02BB F9 357 LD SP,HL 032E CB8A 418 RES 1,D
02BC DDF9 358 LD SP,IX 0330 CB8B 419 RES 1,E
02BE FDF9 359 LD SP,IY 0332 CB8C 420 RES 1,H
02CO 318405 360 LD SP,NN 0334 CB8D 421 RES l,L
02C3 EDA8 361 LDD 0336 CB96 422 RES 2,(HL)
02C5 EDB8 362 LDDR 0338 DDCB0596 423 RES 2,(IX+IND)
02C7 EDAO 363 LDI 033C FDCB0596 424 RES 2,(IY +IND)
02C9 EDBO 364 LDIR 0340 CB97 425 RES 2,A
02CB ED44 365 NEG 0342 CB90 426 RES 2,B
02CD 00 366 NOP 0344 CB91 427 RES 2,C
02CE B6 367 OR (HL) 0346 CB92 428 RES 2,D
02CF DDB605 368 OR (IX+IND) 0348 CB93 429 RES 2,E
0202 FDB605 369 OR (IY+IND) 034A CB94 430 RES 2,H
02D5 B7 370 OR A 034C CB95 431 RES 2,L
0206 BO 371 OR B 034E CB9E 432 RES 3,(HL)
0207 Bl 372 OR C 0350 DDCB059E 433 RES 3,(IX + IND)
02D8 B2 373 OR D 0354 FDCB059E 434 RES 3,(IY + IND)
0209 B3 374 OR E 0358 CB9F 435 RES 3,A
020A B4 375 OR H 035A CB98 436 RES 3,B
020B B5 376 OR L 035C CB99 437 RES 3,C
020C F620 377 OR N 035E CB9A 438 RES 3,D
020E ED8B 378 OTDR 0360 CB9B 439 RES 3,E
02EO EDB3 379 OTIR 0362 CB9C 440 RES 3,H
02E2 ED79 380 OUT (C),A 0364 CB9D 441 RES 3,L
02E4 ED41 381 OUT (C),B 0366 CBA6 442 RES 4,(HL)
02E6 ED49 382 OUT (C),C 0368 DDCB05A6 443 RES 4,(IX+IND)
02E8 EDS! 383 OUT (C),D 036C FDCB05A6 444 RES 4,(IY +IND)
02EA ED59 384 OUT (C),E 0370 CBA7 445 RES 4,A
02EC ED61 385 OUT (C),H 0372 CBAO 446 RES 4,B
02EE · ED69 386 OUT (C),L 0374 CBAI 447 RES 4,C
02FO D320 387 OUT N,A 0376 CBA2 448 RES 4,D
02F2 EDAB 388 OUTD 0378 CBA3 449 RES 4,E
02F4 EDA3 389 OUT! 037A CBA4 450 RES 4,H
02F6 Fl 390 POP AF 037C CBAS 451 RES 4,L
02F7 Cl 391 POP BC 037E CBAE 452 RES 5,(HL)
02F8 DI 392 POP DE 0380 DDCBOSAE 453 RES 5,(IX+IND)
02F9 El 393 POP HL 0384 FDCBOSAE 454 RES 5,(IY+IND)
02FA DDEI 394 POP IX 0388 CBAF 455 RES 5,A
02FC FDEI 395 POP IY 038A CBA8 456 RES 5,B
02FE FS 396 PUSH AF 038C CBA9 457 RES 5,C
02FF cs 397 PUSH BC 038E CBAA 458 RES 5,D
0300 DS 398 PUSH DE 0390 CBAB 459 RES 5,E
0301 ES 399 PUSH HL 0392 CBAC 460 RES 5,H
0302 DDES 400 PUSH IX 0394 CBAD 461 RES 5,L
0304 FDES 401 PUSH IY 0396 CBB6 462 RES 6,(HL)
0306 CB86 402 RES 0,(HL) 0398 DDCB05B6 463 RES 6,(IX+IND)
0308 DDCB0586 403 RES O,(IX+IND) 039C FDCB05B6 464 RES 6,(IY+IND)
030C FDCB0586 404 RES O,(IY +IND) 03AO CBB7 465 RES 6,A
0310 CB87 405 RES O,A 03A2 CBBO 466 RES 6,B
0312 CB80 406 RES O,B 03A4 CBBI 467 RES 6,C
0314 CB81 407 RES O,C 03A6 CBB2 468 RES 6,D
0316 CB82 408 RES O,D 03A8 CBB3 469 RES 6,E
0318 CB83 409 RES O,E 03AA CBB4 470 RES 6,H
031A CB84 410 RES O,H 03AC CBB5 471 RES 6,L
031C CB85 411 RES O,L 03AE CBBE 472 RES 7,(HL)
031E CB8E 412 RES l,(HL) 03B0 DDCB05BE 473 RES 7,(IX+IND)
0320 DDCB058E 413 RES l,(IX+IND) 03B4 FDCB05BE 474 RES 7,(IY+IND)

243

SERIES I EDITOR/ASSEMBLER

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
03B8 CBBF 475 RES 7,A 0436 CBOD 536 RRC L
03BA CBB8 476 RES 7,B 0438 OF 537 RRCA
03BC CBB9 477 RES 7,C 0439 ED67 538 RRD
03BE CBBA 478 RES 7,D 043B C7 539 RST 0
03CO CBBB 479 RES 7,E 043C D7 540 RST JOH
03C2 CBBC 480 RES 7,H 043D DF 541 RST 18H
03C4 CBBD 481 RES 7,L 043E E7 542 RST 20H
03C6 C9 482 RET 043F EF 543 RST 28H
03C7 D8 483 RET C 0440 F7 544 RST 30H
03C8 F8 484 RET M 0441 FF 545 RST 38H
03C9 DO 485 RET NC 0442 CF 546 RST 08H
03CA co 486 RET NZ 0443 9E 547 SBC A,(HL)
03CB FO 487 RET p 0444 DD9E05 548 SBC A,(IX+IND)
03CC ES 488 RET PE 0447 FD9E05 549 SBC A,(IY+IND)
03CD EO 489 RET PO 044A 9F 550 SBC A,A
03CE cs 490 RET z 044B 98 551 SBC A,B
03CF ED4D 491 RETI 044C 99 552 SBC A,C
03D1 ED45 492 RETN 044D 9A 553 SBC A,D
03D3 CB16 493 RL (HL) 044E 9B 554 SBC A,E
03D5 DDCB0516 494 RL (IX+IND) 044F 9C 555 SBC A,H
03D9 FDCB0516 495 RL (IY+IND) 0450 9D 556 SBC A,L
03DD CB17 496 RL A 0451 DE20 557 SBC A,N
03DF CBIO 497 RL B 0453 ED42 558 SBC HL,BC
03EI CBll 498 RL C 0455 ED52 559 SBC HL,DE
03E3 CB12 499 RL D 0457 ED62 560 SBC HL,HL
03E5 C813 500 RL E 0459 ED72 561 SBC HL,SP
03E7 CBl4 501 RL H 045B 37 562 SCF
03E9 CB15 502 RL L 045C CBC6 563 SET 0,(HL)
03EB 17 503 RLA 045E DDCB05C6 564 SET O,(IX+IND)
03EC CB06 504 RLC (HL) 0462 FDCB05C6 565 SET 0,(IY+IND)
03EE DDCB0506 505 RLC (IX+IND) 0466 CBC? 566 SET O,A
03F2 FDCB0506 506 RLC (IY+IND) 0468 CBCO 567 SET O,B
03F6 CB07 507 RLC A 046A CBC! 568 SET o,c
03F8 CBOO 508 RLC B 046C CBC2 569 SET O,D
03FA CBOI 509 RLC C 046E CBC3 570 SET O,E
03FC CB02 510 RLC D 0470 CBC4 571 SET O,H
03FE CB03 511 RLC E 0472 CBC5 572 SET O,L
0400 CB04 512 RLC H 0474 CBCE 573 SET 1,(HL)
0402 CB05 513 RLC L 0476 DDCB05CE 574 SET 1,(IX + IND)
0404 07 514 RLCA 047A FDCB05CE 575 SET l,(IY + IND)
0405 ED6F 515 RLD 047E CBCF 576 SET 1,A
0407 CBIE 516 RR (HLJ 0480 CBC8 577 SET l,B
0409 DDCB051E 517 RR (IY+IND) 0482 CBC9 578 SET 1,C
040D FDCB051E 518 RR (IY+IND) 0484 CBCA 579 SET l,D
0411 CBIF 519 RR A 0486 CBCB 580 SET 1,E
0413 CB18 520 RR B 0488 CBCC 581 SET 1,H
0415 CB19 521 RR C 048A CBCD 582 SET l,L
0417 CBIA 522 RR D 048C CBD6 583 SET 2,(HL)
0419 CBIB 523 RR E 048E DDCB05D6 584 SET 2,(IX+IND)
041B CBIC 524 RR H 0492 FDCB05D6 585 SET 2,(IY+IND)
0410 CBID 525 RR L 0496 CBD7 586 SET 2,A
041F IF 526 RRA 0498 CBDO 587 SET 2,B
0420 CBOE 527 RRC (HL) 049A CBDI 588 SET 2,C
0422 DDCB050E 528 RRC (IX+IND) 049C CBD2 589 SET 2,D
0426 FDCB050E 529 RRC (IY+IND) 049E CBD3 590 SET 2,E
042A CBOF 530 RRC A 04AO CBD4 591 SET 2,H
042C CB08 531 RRC B 04A2 CBD5 592 SET 2,L
042E CB09 532 RRC C 04A4 CBD8 593 SET 3,B
0430 CBOA 533 RRC D 04A6 CBDE 594 SET 3,(HL)
0432 CBOB 534 RRC E 04A8 DDCB05DE 595 SET 3,(IX+IND)
0434 CBOC 535 RRC H 04AC FDCB05DE 596 SET 3,(IY +IND)

244

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
04B4 CBDA 599 SET 3,D 052E CB23 650 SLA E
04B6 CBDB 600 SET 3,E 0530 CB24 651 SLA H
04B8 CBDC 601 SET 3,H 0532 CB25 652 SLA L
04BA CBDD 602 SET 3,L 0534 CB2E 653 SRA (HL)
04BC CBE6 603 SET 4,(HL) 0536 DDCB052E 654 SRA (IX+IND)
04BE DDCB05E6 604 SET 4,(IX+IND) 053A FDCB052E 655 SRA (IY+IND)
04C2 FDCB05E6 605 SET 4,(IY+IND) 053E CB2F 656 SRA A
04C6 CBE7 606 SET 4,A 0540 CB28 657 SRA B
04C8 CBE0 607 SET 4,B 0542 CB29 658 SRA C
04CA CBEl 608 SET 4,C 0544 CB2A 659 SRA D
04CC CBE2 609 SET 4,D 0546 CB2B 660 SRA E
04CE CBE3 610 SET 4,E 0548 CB2C 661 SRA H
04DO CBE4 611 SET 4,H 054A CB2D 662 SRA L
04D2 CBE5 612 SET 4,L 054C CB3E 663 SRL (HL)
04D4 CBEE 613 SET 5,(HL) 054E DDCB053E 664 SRL (IX+IND)
04D6 DDCB05EE 614 SET 5,(IX + IND) 0552 FDCB053E 665 SRL (IY+IND)
04DA FDCB05EE 615 SET 5,(IY +IND) 0556 CB3F 666 SRL A
04DE CBEF 616 SET 5,A 0558 CB38 667 SRL B
04EO CBE8 617 SET 5,B 055A CB39 668 SRL C
04E2 CBE9 618 SET 5,C 055C CB3A 669 SRL D
04E4 CBEA 619 SET 5,D 055E CB3B 670 SRL E
04E6 CBEB 620 SET 5,E 0560 CB3C 671 SRL H
04E8 CBEC 621 SET 5,H 0562 CB3D 672 SRL L
04EA CBED 622 SET 5,L 0564 96 673 SUB (HL)
04EC CBF6 623 SET 6,(HL) 0565 DD9605 674 SUB (IX+IND)
04EE DDCB05F6 624 SET 6,(IX+IND) 0568 FD9605 675 SUB (IY+IND)
04F2 FDCB05F6 625 SET 6,(IY+IND) 056B 97 676 SUB A
04F6 CBF7 626 SET 6,A 056C 90 677 SUB B
04F8 CBF0 627 SET 6,B 056D 91 678 SUB C
04FA CBFl 628 SET 6,C 056E 92 679 SUB D
04FC CBF2 629 SET 6,D 056F 93 680 SUB E
04FE CBF3 630 SET 6,E 0570 94 681 SUB H
0500 CBF4 631 SET 6,H 0571 95 682 SUB L
0502 CBF5 632 SET 6,L 0572 D620 683 SUB N
0504 CBFE 633 SET 7,(HL) 0574 AE 684 XOR (HL)
0506 DDCB05FE 634 SET 7,(IX+IND) 0575 DDAE05 685 XOR (IX+IND)
050A FDCB05FE 635 SET 7,(IY+IND) 0578 FDAE05 686 XOR (IY+IND)
050E CBFF 636 SET 7,A 057B AF 687 XOR A
0510 CBF8 637 SET 7,B 057C AS 688 XOR B
0512 CF9 638 SET 7,C 057D A9 689 XOR C
0514 CBFA 639 SET 7,D 057E AA 690 XOR D
0516 CBFB 640 SET 7,E 057F AB 691 XOR E
0518 CBFC 641 SET 7,H 0580 AC 692 XOR H
051A CBFD 642 SET 7,L 0581 AD 693 XOR L
051C CB26 643 SLA (HL) 0582 EE20 694 XOR N
051E DDCB0526 644 SLA (IX+IND) 0584 695NN DEFS 2
0522 FDCB0526 645 SLA (IY+IND) 696IND EQU 5
0526 CB27 646 SLA A 697M EQU JOH
0528 CB20 647 SLA B 698N EQU 20H
052A CB21 648 SLA C 699 DIS EQU 30H
052C CB22 649 SLA D 700 END

245

SERIES I EDITOR/ASSEMBLER

AppendixF / Z-80 CPU Register and
Architecture

This section gives information about the actual Z8O chip including the Central
Processing Unit (CPU) Register configuration.

Z-80 CPU Architecture
A block diagram of the internal architecture of the Z-80 CPU is shown in Figure
2. The diagram shows all of the major elements in the CPU and it should be
referred to throughout the following description.

CPU Registers
The Z-80 CPU contains 208 bits of R/W memory that are accessible to the
programmer. Figure 3 illustrates how this memory is configured into eighteen
8-bit registers and four 16-bit registers. All z-so registers are implemented using
static RAM. The registers include two sets of six general purpose registers that
may be used individually as 8-bit registers or in pairs of 16-bit registers. There
are also two sets of accumulator and flag-registers.

Special Purpose Registers

13
CPU AND
SYSTEM
CONTROL
SIGNALS

INSTRUCTION
DECODE
&
CPU
CONTROL

r r r
+5V GND •I>

Figure 2, Z-80 CPU Block Diagram.

246

8-BIT
DATA BUS

16-BIT
ADDRESS BUS

ALU

MAIN REG SET ALTERNATE REG SET

ACCUMULATOR FLAGS ACCUMULATOR
A F A'

B C B'

D E D'

H L H'

INTERRUPT

I
MEMORY

VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGISTER IV

STACK POINTER SP

PROGRAM COUNTER PC

Figure 3, Z-80 CPU Register Configuration.

FLAGS
F'

C'

E'

L'

SPECIAL
PURPOSE
REGISTERS

}

GENERAL
PURPOSE
REGISTERS

1. Program Counter (PC). The program counter holds the 16-bit address of the
current instruction being fetched from memory. The PC is automatically
incremented after its contents have been transferred to the address lines.
When a program jump occurs the new value is automatically placed in the PC,

overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current
top of a stack located anywhere in external system RAM memory. The
external stack memory is organized as a last-in first-out (LIFO) file.

Data can be pushed onto the stack from specific CPU registers or popped off
of the stack into specific CPU registers through the execution of PUSH and POP

instructions. The data popped from the stack is always the last data pushed
onto it. The stack allows simple implementation of multiple level interrupts,
unlimited subroutine nesting and simplification of many types of data
manipulation.

3. lwo Index Register (IX & IY). The two independent index registers hold a
16-bit base address that is used in indexed addressing modes. In this mode,
an index register is used as a base to point to a region in memory from which
data is to be stored or retrieved. An additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is
specified as a two's complement signed integer. This mode of addressing
greatly simplifies many types of programs, especially where tables of data
are used.

APPENDIX

247

SERIES I EDITOR/ASSEMBLER

4. Interrupt Page Address Register (1). The Z-80 CPU can be operated in a
mode where an indirect call to any memory location can be achieved in
response to an interrupt. The I Register is used for this purpose to store the
high order 8-bits of the indirect address while the interrupting device provides
the lower 8-bits of the address. This feature allows interrupt routines to be
dynamically located anywhere in memory with absolute minimal access time
to the routine.

5. Memory Refresh Register (R). The Z-80 CPU contains a memory refresh
counter to enable dynamic memories to be used with the same ease as static
memories. Seven bits of this 8 bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as programmed as the result
of an LD R, A instruction. The data in the refresh counter is sent out on the
lower portion of the address bus along with a refresh control signal while the
CPU is decoding and executing the fetched instruction. This mode of refresh is
totally transparent to the programmer and does not slow down the CPU

operation. The programmer can load the R register for testing purposes, but
this register is normally not used by the programmer. During refresh, the
contents of the I register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag
registers. The accumulator holds the results of 8-bit arithmetic or logical
operations while the flag register indicates specific conditions for 8 or 16-bit
operations, such as indicating whether or not the result of an operation is equal
to zero. The programmer selects the accumulator and flag pair that he wishes to
work with a single exchange instruction so that he may easily work with either
pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six
8-bit registers that may be used individually as 8-bit registers or as 16-bit
register pairs by the programmer. One set is called BC, DE and HL while the
complementary set is called BC; DE and HL.' At any one time the programmer
can select either set of registers to work with through a single exchange
command for the entire set. In systems where fast interrupt response is required,
one set of general purpose registers and an accumulator/flag register may be
reserved for handling this very fast routine. Only a simple exchange command
need be executed to go between the routines. This greatly reduces interrupt
service time by eliminating the requirement for saving and retrieving register
contents in the external stack during interrupt or subroutine processing. These
general purpose registers are used for a wide range of applications by the
program.mer. They also simplify programming, especially in ROM based systems
where little external read/write memory is available.

248

Arithmetic & Logic Unit (ALU)
The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU.

Internally the ALU communicates with the registers and the external data bus on
the internal data bus. The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)

Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test Bit

Instruction Register and CPU Control
As each instruction is fetched from memory, it is placed in the instruction
register and decoded. The control sections performs this function and then
generates and supplies all of the control signals necessary to read or write data
from or to the registers, control the ALU and provide all required external control
signals.

Z-80 CPU Pin Description

The z-so CPU is packaged in an industry standard 4-0 pin Dual In-Line Package.
The l/O pins are shown in Figure 4 and the function of each is described below.

~-A15

(Address Bus)

M1
(Machine Cycle
one)

Tri-state output, active high. ~-A15 constitute a 16-bit
address bus. The address bus provides the address for
memory (up to 64K bytes) data exchanges and for I/0
device data exchanges. I/0 addressing uses the. 8 lower
address bits to allow the user to directly select up to 256
input or 256 output ports. ~ is the least significant address
bit. During refresh time, the lower 7 bits contain a valid
refresh address.

Tri-state input/output, active high. D0-D7 constitute an
8-bit bidirectional data bus. The data bus is used for data
exchanges with memory and I/0 devices.

Output, active low. M1 indicates that the current machine
cycle is the OP code fetch cycle of an instruction execution.
Note that during execution of 2-byte op-codes, M1 is
generated as each op-code byte is fetched. These two byte
op-codes always begin with CBH, DDH, EDH or FDH. M1

also occurs with IORQ to indicate an interrupt acknowledge
cycle.

APPENDIX

249

SERIES I EDITOR/ASSEMBLER

27 30
Ao

M1 A1

MREO A2

SYSTEM
IORO A3

CONTROL R5 A4

WR A5

A6

RFSH
28 A7

ADDRESS
As BUS

HAU
18 39 Ag

40
A,o

WAIT
24 1

A11
2

CPU Z-80 CPU A12

CONTROL INT
16 3

A13

NMI
4

A14
5

A15

RESET

CPU { BUSRQ
BUS
CONTROL BUSAK

14

15
Do

12
D,

<I>
8

D2

+SV
7

D3 DATA
GND D4 BUS

9
D5

10

13
06

D7

Figure 4, Z-80 Pin Configuration.

MREQ
(Memory
Request)

IORQ
(Input/Output
Request)

RD
(Memory Read)

WR
(Memory Write)

250

Tri-state output, active low. The memory request signal
indicates that the address bus holds a valid address for a
memory read or memory write operation.

Tri-state output, active low. The IORQ signal indicates that
the lower half of the address bus holds a valid 1/0 address
for a 1/0 read or write operation. An IORQ signal is also
generated with an MI signal when an interrupt is being
acknowledged to indicate that an interrupt response vector
can be placed on the data bus. Interrupt Acknowledge
operations occur during MI time while 1/0 operations never
occur during M1 time.

Tri-state output, active low. RD indicates that the CPU
wants to read data from memory or an 1/0 device. The
addressed 1/0 device or memory should use this signal to
gate data onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data
bus holds valid data to be stored in the addressed memory
or 1/0 device.

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt
Request)

NMI
(Non Maskable
Interrupt)

RESET

Output, active low. RFSH indicates that the lower 7 bits of
the address bus contain a refresh address for dynamic
memories and the current MREQ signal should be used to
do a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has
executed a HALT software instruction and is awaiting either
a non maskable or a maskable interrupt (with the mask
enabled) before operation can resume. While halted, the
CPU executes NOP's to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the
addressed memory or 1/0 devices are not ready for a data
transfer. The CPU continues to enter wait states for as long
as this signal is active. This signal allows memory or 1/0
devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated
by 1/0 devices. A request will be honored at the end of
the current instruction if the internal software controlled
interrupt enable flip-flop (IFF) is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an
acknowledge signal (IORQ during M1 time) is sent out at
the beginning of the next instruction cycle.

Input, negative edge triggered. The non maskable interrupt
request line has a higher priority than INT and is always
recognized at the end of the current instruction, independent
of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location
0066H. The program counter is automatically saved in the
external stack so that the user can return to the program that
was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a
BUSRQ will override a NMI.

Input, active low. RESET forces the program counter to
zero and initializes the CPU. The CPU initialization
includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00H
3) Set Register R = 00H
4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the
inactive state.

APPENDIX

251

SERIES I EDITOR/ASSEMBLER

BUSRQ
(Bus Request)

BUSAK
(Bus
Acknowledge)

<I>

Input, active low. The bus request signal is used to request
the CPU address bus, data bus and tri-state output control
signals to go to a high impedance state so that other devices
can control these buses. When BUSRQ is activated, the
CPU will set these buses to a high impedance state as soon
as the current CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to
the requesting device that the CPU address bus, data bus
and tri-state control bus signals have been set to their high
impedance state and the external device can now control
these signals.

Single phase TTL level clock which requires only a 330
ohm pull-up resistor to + 5 volts to meet all clock
requirements.

Z-80 CPU Instruction Set
The Z-80 CPU can execute 158 different instruction types including all 78 of the
8080A CPU. The instructions can be broken down into the following major
groups:

• Load and Exchange

• Block Transfer and Search
• Arithmetic and Logical

• Rotate and Shift
• Bit Manipulation (set, reset, test)

• Jump, Call and Return

• Input/Output

• Basic CPU Control

252

Subject Page

Abbreviations . 17
Accumulator . 248
ADCA,S 109
ADC HL,ss . 142
Add/Subtract flag 231
ADD A,(HL) 107
ADD A,(IX + d) 107
ADDA,n 106
ADD A,r : . . 105
ADD HL,ss 141
ADD IX,pp . 144
ADD A,(IY + d) 108
ADD IY,rr 145
Alphabetical list of Z-80

instructions 240-245
ANDs 115
Arithmetic logic unit (ALU) 249
Assembler 21

Commands . 21
Definitions . 25-26
Output 23
Switch 21-22
Using the assembler 21

BIT B,(HL) . 178
BIT B,(IX + d) 179
BIT B,(IY + d) 180
BIT b,r 177
CALL cc,nn 202
CALL nn 201
Carry flag 231
CCF' 134
Central processing unit (CPU) 249
Comments . 26
Computer Type . 4
CPD 102
CPDR 103
CPI 99
CPIR 101
CPL 132
CP s 122
CPU block diagram 246
CPU-pin description 249-252
Current line , 7

INDEX

INDEX

Subject Page

DAA 131
DECIX 149
DECIY 149
DECm 127
DECss 148
DI 136
DJNZe 199
Editor

Commands 8-15, 18, 19
Definition . 1
Featuresof 2
How to use 2, 5, 7

El _ 137
Error messages (assembler) 24-25
Error messages (Editor) 16
EXAF,AF' 87
EXDE,HL 87
Expressions . 29
EX(SP),HL 89
EX(SP),IX 90
EX(SP),IY 91
EXX 88
File 7
Filename 7
Flag register . 248
Flags (status) 231
Half-Carryflag 232-233
HALT 136
IMO 138
IM1 138
IM2 139
IN A,(n) 211
INC (HL) . 125
INCIX 146
INC (IX+d) 125
INC IY 147
INC (IY +d) 126
INC r 124
Increment . 7
INC ss 146
IND 216
Index registers 247
INOR 217

253

SERIES I EDITOR/ASSEMBLER

Subject Page

INI 213
INIR 214
Input/Output commands 13
IN r,(C) 212
Interrupt register 248
Italic type . 4
JP cc,nn . 190
JP (HL) 197
JP(IX) 198
JP (IY) 198
JPnn 189
JR C,e 192
JR e 191
JR NC,e 193
JR NZ,e 195
JR Z,e 194
Label 26
LO A,(BC) . 57
LO A,(OE) 57
LO A,I 61
LO A,(nn) 58
LOA,R 62
LO (BC),A 59
LOO 96
LO dd,(nn) 68
LO dd,nn 65
LO (OE),A 59
LOOR 97
LO (HL),n 54
LO HL,(nn) 67
LO (HL),r 52
LOI 93
LOl,A 62
LOIR 94
LO (IX+ d),n 55
LO(IX+d),r 52
LO IX,nn 66
LO IX,(nn) 69
LO (IY +d),n 56
LO (IY + d),r 53
LO IY,nn 67
LO IY,(nn) 70
LO (nn),A 60
LO (nn),dd 72
LO (nn),HL 71

254

Subject Page

LO (nn),IX 73
LO (nn),IY 74
LO R,A 63
LO r,(HL) 49
LO r,(IX + d) 49
LO r,(IY + d) 51
LO r,n 48
LO r,r' 47
LO SP,HL 75
LO SP,IX 76
LOSP,IY 77
Memory refresh register 248
Mnemonics . 26
Model I-Subroutines 228
NEG 133
NOP 135
Notations . 4
Numerical list of Z-80 instructions 234-239
Object code . 33
Object code . 4
Object file . 4
Operands 26, 29
Operations . 27
OR s 117
OTOR 224
OTIR 221
OUT (C),r 219
OUTO 223
OUTI 220
OUT (n),A 218
Parity/Overflow flag 232
POPIX 82
POP IY 84
POPqq 81
Program counter 247
Pseudo Operations 27-28
PUSH IX 79
PUSH IY 80
PUSH qq 77
Register configuration 246
RES b,m 186
RET 204
RETcc 205
RETI 207
RETN 208

Subject Page

RLA 152
RLCA 151
RLC (HL) 156
RLC (IX+d) 157
RLC (IV+ d) 158
RLC r 155
RLD 173
RLm 160
RRA 154
RRCA 153
RRC m 162
RRD 175
RR m 164
RSTp 209
Sample Programming 31-36
SBC A,s 113
SBC HL,ss . 143
SCF 135
SET b,(HL) 182
SETb,(IX+d) 183
SET b,(IY + d) 185
SETb,r 181
Sign flag . 233
Using the TPSRC utility 227
SLAm 166
Source Code . 4
Source File . 4
Special keys 8, 17
Special Terms . 4
SRAm 169
SRLm 171
Stack Pointer 247
Status flags . 231
SUB s 111
Symbols 17
Text 7
Text buffer . 7
Text handling . 7
Text handling commands 9
Trial Assembly . 32
XOR s 119
Z-80 instructions 37-226
Zero flag . 233

INDEX

255

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused or
alleged to be caused directly or indirectly by computer equipment or pro
grams sold by Radio Shack, including but not limited to any interruption of
service, loss of business or anticipatory profits or consequential damages
resulting from the use or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the

program, run and test sample sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE

A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license
to use on CUSTOMER'S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/ or disk) or stored (ROM) is transferred to the CUSTOMER. but not title
to the software.

B . In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the software allows a back
up copy to be made) , and shall include Radio Shack's copyright notice on
all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft
ware (modified or not, in whole or in part) , provided CUSTOMER has
purchased one copy of the software for each one resold . The provisions of
this software License (paragraphs A, B, and C) shall also be applicable to
third parties purchasing such software from CUSTOMER.

RADIO SHACK DA
[!l DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH. TEXAS 76102
CANADA: BARRIE. ONTARIO L4M 4W5

AUSTRALIA

280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

TANDY CORPORATION

BELGIUM

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A.

*

* *
* ALL USERS MODELS I/III *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

===
Make sure you read the indicated pages for the stock number
of the package that you are going to use.

STOCK ADDENDUM PAGES ·ro READ
NUMBER
------- --
26-2013 MODEL I version pages 1, 3, 4, 5, 6, and 7

MODEL III version page 2

26-2203 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2204 MODEL I version pages 1, 3, 4, 5, and 6
MODEL III version page 2

26-2206 MODEL I pages 1, 3, 4, 5, and 6

26-2207 MODEL III page 2

26-2208 MODEL I pages 1, 3, 4, 5, and 6

26-2209 MODEL III page 2

26-1149 MODEL I version page 1, 3, 4, 5, 6, and 8
MODEL III version page 2, 8

------- --

8759170

*

* *
* MODEL I USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

UPGRADE UTILITY ON TRSDOS 2.3B
---------------------==
The MODEL I diskette in this package contains a NEW version
of TRSDOS which is not compatible with OLD versions of
TRSDOS, see below for further details.

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
UPGRADEd before use. Once UPGRADEd, a system or data
diskette becomes a NEW TRSDOS data diskette.

OLD diskettes used under NEW TRSDOS without UPGRADEing, may
cause extraneous information to be read at the end of files,
giving a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes usel under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you determine that you need to use the UPGRADE utility
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B
UPGRADE UTILITY" contained in this addendum.

NOTE: When changing from one TRSDOS to the other you must
use the RESET switch each time the diskette in drive 0
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

UPGRADE:

TRSDOS 2.1, 2.2, and 2.3.
TRSDOS 2.3B.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is
used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen
will clear and "NO SYSTEM" will be
displayed.
A program contained on the TRSDOS 2.3B
diskette.

1 of 8

*
* k

* MODEL III USERS *
* IMPORTANT NOTICE PLEASE READ FIRST*
* *
*

XFERSYS UTILITY ON TRSDOS 1.3
===
The MODEL III diskette in this package contains a NEW
version of TRSDOS which is not compatible with OLD versions
of TRSDOS, see below for further details.
===

OLD TRSDOS diskettes to be used under the NEW TRSDOS MUST be
XFERSYSed before use. Once XFERSYSed, an OLD TRSDOS diskette
becomes a NEW TRSDOS diskette and should not be used with
OLD TRSDOS again. If you started with an OLD system or data
disk, the XFERSYSed diskette will be a NEW system or data
diskette respectively.

OLD diskettes used under NEW TRSDOS without XFERSYSing, may
cause extraneous information to be read at the end of files,
g1v1ng a false End Of File (EOF) indication. Some programs
will not function properly under these conditions.

NEW diskettes used under OLD TRSDOS, may not access all
data and/or NEW programs may not run correctly.

If you need to use the XFERSYS utility see the TRSDOS
section of your TRS-80 MODEL III Disk System Owner's Manual.

NOTE: When changing from one TRSDOS to the other you MUST
use the RESET switch each time the diskette in drive 0
is changed. You may also XFERSYS onto a NEW data disk.
If this is done, all system files of the system disk
will be moved onto the data disk.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN
OLD TRSDOS DISKETTE SHOULD NOT BE XFERSYSD.

OLD:
NEW:
file:

program:

data:

system diskette:

data diskette:

XFERSYS:

TRSDOS 1.1 and 1.2.
TRSDOS 1.3.
A collection of information stored as one
named unit in the directory.
A file which causes the computer to
perform a function.
Information contained in a file which is

- used by a program.
A diskette containing TRSDOS. When this
diskette is placed in drive O and the
RESET switch is pressed, TRSDOS will begin
to run.
A diskette which does not contain TRSDOS.
If this diskette is placed in drive O and
the RESET switch is pressed, the screen·
will clear and "Not a SYSTEM Disk" will be
displayed.
A program contained on the TRSDOS 1.3
diskette.

2 of 8

TO: owners of the Communications Package, Series I Editor
Assembler, BASIC Compiler, BASIC Runtime, COBOL
Compiler, and COBOL Runtime.

FROM: Radio Shack Computer Merchandising

DATE: August 18, 1981

RE: TRSDOS 2.38 for the MODEL I

Differences between TRSDOS 2.3B and TRSDOS 2.3 are:

1. variable length records have been corrected, in all
aspects.

2. In most cases, your computer will not "hang up" when you
attempt use of a device which is not connected and
powered up.

3. The DEVICE command has been deleted.

4. The following commands have been added:

CLS
This command clears the display and puts it in the 64-
character mode.

PATCH 'filespec' {ADD=aaaa,FIND=bb,CHG=cc)
This command lets you make a change to a program file.
You need to specify:

'aaaa' - a four byte hexadecimal address specifying
the memory location of the data you want to
change

'bb' - the contents of the byte you want to find
and change. You can specify the contents of
more than one byte.

'cc' - the new contents to replace 'bb'

For example:
PATCH DUMMY/CMD {ADD=4567,FIND=CD3300,CHG=CD3B00)

changes CD3300, which resides at memory location 4567
(HEX) in the file namea DUMMY/CMD, to CD3B00.

If this command gives you a STRING NOT FOUND error
message, this means that either 'bb' does not exist, or
else 'bb' crosses a sector boundary. If 'bb' crosses a
sector boundary, you must patch your file one byte at
a time. For example:

PATCH DUMMY/CMD {ADD=4568,FIND=33,CHG=3B)
replaces the contents of the second byte in the above
example.

TAPE {S=source device,D=destination device)
This command transfers Z-80 machine-language programs
from one device to the other. You must specify the

3 of 8

'source device' and 'destination device' using these
abbreviations:

T - Tape
D - Disk
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you
for the diskette file specification and ask you to press
<ENTER> when the cassette recorder is ready for
recording.

CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write
over TRSDOS or the tape command.

5. These commands have been slightly changed:

BACKUP now checks to see if the diskette which will be
your backup copy is already formatted. If it is, BACKUP
will ask you if you want to REFORMAT it.

CLOCK will no longer increment the date when the time
goes beyond 23:59:59.

COPY now works with only one-drive. For example:
COPY FILEl:0 to FILE3:0

duplicates the contents of FILEl to a file named FILE3
on the same diskette.

KILL will now allow you to kill a protected file without
knowing its UPDATE or protection level. To kill this
kind of file, type an exclamation mark (!) at the end of
the KILL command. For example:

KILL EXAMPLE!
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the
exclamation mark.)

LIST only lists the printable ASCII characters.

PROT no longer allows you to use the UNLOCK parameter.

DIR is now in this format:

Disk Name: TRSDOS
Filename
JOBFILE/BLD
TERMINAL/Vl
LOADX/CMD
*** 171 Free

Attrb
N*X0
N*X0
N*X0

Granules

Drive: 0
LRL #Rec
256 1
256 5
256 5

04/15/81
#Grn #Ext

1 1
2 1
2 1

EOF
1

126
0

1. Disk name is the name which was assigned to the disk
when it was formatted.

2. File Name is the name and extension which was
assigned to the file when it was created. The password (if
any) is not shown.

3. Attributes is a four-character field:

4 of 8

a. the first character is either I (Invisible file)
or N (Non-invisable file)

b. the second character is S (System file) or*
(User file)

c. the third character is the password protection
status of the file:

X - the file is unprotected (no password)
A - the file has an access word but no

update word
U - the file has an update word but no

access word
B - the file has both update and access

word
d. the fourth character specifies the level of

access assigned to the access word:
0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules
remain on the diskette.

5. Logical Record Length - the record length which was
assigned to the file when it was created.

6. Number of Records - how many logical records have
been written.

7. Number of Granules - how many granules have been used
in that particular file.

8. Number of Extents - how many segments (contiguous
blocks of up to 32 granules) of disk space are allocated to
the file.

9. End of File (EOF) - shows the last byte number of the
file.

5 of 8

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY

If you determine that you need to use the UPGRADE
ut{lity then proceed as indicated below.

Insert your TRSDOS 2.3B system diskette in drive 0,
press the RESET switch, and when TRSDOS READY is displayed
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY

FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
1rRSDOS 2. 38 DIRECTORY FORMAT.

ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.

DO YOU WISH TO CONTINUE (Y/N/Q)?

·rhis means that the directory format on your TRSDOS
2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS
2.38 format. Once you type Y to continue, the screen will
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.

Insert the diskette you want to convert in drive 1 and
press <ENTER>. After successful conversion, the screen will
display a CONVERSION COMPLETE message. If you are attempting
to convert a diskette which has already been converted, the
screen will display a DISKETTE IS ALREADY A 2.38 error
message.

TECHNICAL NOTE

For all files indicated in the directory that have an End Of
File (EOF) not equal to zero, UPGRADE will change the number
of records to be one less than the previous record count.
Note that in FILEl, the number of records indicated has been
changed from 10 to 9 after UPGRADE. For FILE2 the records
indicated remain the same since EOF=0.

BEFORE UPGRADE
TRSDOS 2. 1, 2. 2, 2. 3

FILEl EOF=9 10 RECORDS
FILE2 EOF=0 10 RECORDS

AFTER UPGRADE
TRSDOS 2.38

9 RECORDS
10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system
diskette, part of the conversion process will prohibit
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by
killing the files listed below:

SYS0/SYS SYSl/SYS
SYS3/SYS SYS4/SYS
SYS6/SYS FORMAT/CMD
BASICR/CMD BASIC/CMD

6 of 8

SYS2/SYS
SYS5/SYS
BACKUP/CMD

, SPECIAL NOTE FOR 26-2013 MODEL I SERIES I EDITOR/ASSEMBLER

==-----
The MODEL I diskette that contains your EDTASM package
includes TRSDOS 2.3B which is not compatible with TRSDOS
2.1, 2.2, or 2.3. Therefore, a machine language object file
created with this package file CAN NOT simply be COPYied
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

See below for instructions on how to move an object file
from TRSDOS 2.3B onto a TRSDOS 2.1, 2.2, or 2.3 diskette.

===
TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B

ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES

If for example, you desire to use an assembly language
function written with TRSDOS 2.3B EDTASM as a "user's
external subroutine" under the TRSDOS 2.3 BASIC interpreter,
follow the given steps carefully:

1) Insert your TRSDOS 2.3B system diskette that contains the
EDTASM package in drive O and press the RESET switch.

2) Use the EDTASM package to enter and assemble a routine.
We have used the SHIFT routine given in Section 7 of your
TRSDOS & DISK BASIC Reference Manual as an example.

a) Save the source program using the command:
W SHIFT/SRC:0

b) Then assemble the source file with the command:
A SHIF'r/CMD: 0

c) Quit EDTASM with the command:
Q

d) At TRSDOS READY enter the command:
LOAD SHIFT/CMD:0

3) Remove your TRSDOS 2.3B diskette.

4) Insert your TRSDOS 2.3 diskette in drive O and press the
RESET switch.

5) At TRSDOS READY enter the command:
DUMP SHIFT/CMD:0 (START=X'7D00',END=X'7D09',TRA=X'7D00')

Reference Section 4 of your manual and note that X'7000'
is the lowest address that may be used as the origin of
your programs.

6) The file on this diskette, named SHIFT/CMD, may now be
used as needed under TRSDOS 2.1, 2.2, or 2.3 with the
BASIC interpreter as a user's external subroutine.

7 of 8

* * * * * * * * * * * * * * *
* *
* IMPORTANT NOTICE *
* FOR *
* COMMUNICATIONS PACKAGE *
* DISK SYSTEM USERS *
* *
* * * * * * * * * * * * * * *

The 26-1149 Communications Package is delivered on MODEL I
TRSDOS 2.3B and Model III TRSDOS 1.3. Communication can
occur MODEL I to I, III to III, or I to III, but only under
MODEL I TRSDOS 2.3B and MODEL III TRSDOS 1.3.

Data on MODEL I TRSDOS 2.1, 2.2, or 2.3 must be UPGRADEd to
2.3B beofre it can be transmitted. Backup the diskette
before UPGRADEING.

Data on MODEL III TRSDOS 1.1 and 1.2 must be XFERSYSed to
1.3 before it can be transmitted. Backup the diskette
before XFERSYSing.

NOTE: Radio Shack Application programs on TRSDOS 1.1, 1.2,
2.1, 2.2, or 2.3 were tested on the particular
version of TRSDOS they were purchased on.

No guarantee is implied that these programs will
work correctly after being UPDATEd to MODEL I TRSDOS
2.3B or XFERSYSed to MODEL III TRSDOS 1.3.

IMPORTANT NOTE FOR MODEL I USERS: You cannot run BASIC
programs because TRSDOS 2.3 does not contain DISK BASIC.

On page 20 of the Communications Package manual, we suggest
you use SAVE, a DISK BASIC command, to save a transferred
BASIC tape program on diskette. You will not be able to use
the SAVE command with the TRSDOS 2.3B diskette, since it
does not contain DISK BASIC.

8 of 8

Addendum to the
Communications Package Manual

Catalog Number 26-1149

Please make these corrections to your Communications Package
manual:

1. Page 16: Change <SHIFT> <X> to <SHIFT> <down
arrow> <X>. In the next sentence, change <SHIFT>
<down arrow> to <SHIFT> <up arrow>.

2. Page 32: Memory location 16889 should be set to
108 rather than 104.

3. Page 35: Please note that the control function
does not work on some of the early Model III's. You
will have to press RESET to exit the TERM program
and ·return to BASIC or TRSDOS.

If you have a Model III, please note the following regarding
how to transfer tape data files (described in the manual on
pages 22 and 23):

COMPROG will prompt you and your friend with Cass?
before each block (portion) of data is transferred.
Both of you must specify the baud rate in response
to each of these prompts.

BASIC data files may only be transmitted at a low
baud rate. Therefore, when transmitting a BASIC
data file, you must respond to all the Cass? prompts
with L. If you will be writing a program to read
the file, you must specify the low baud rate before
running the program.

We suggest that you use only a tape which contains
a single data file. (If you have more than one
data file on a tape, you will have to manually stop
the tape recorder after the file is transmitted.
Otherwise, COMPROG will continue transferring all
the data on the tape.>

Note for Tape System Customers:

If you exit one of the communications programs, you can
return to it with the SYSTEM command (providing the program
in memory has not been over-written). Type SYSTEM <ENTER>.
In response to the*? prompt, type/ followed by the
program's transfer address .

For the HOST and TERM pr ograms, the transfer address is the
Memory Size address (listed on page 8) plus one. For the
COMPROG program, the transfer address is 46357 on a 32K
system, or 62741 on a 48K system.

Thank You!
Radio Shack

A Division of Tandy Corporation
875-9141

	one.pdf
	1
	2

